Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-13627-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13627-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds
School of Earth and Environment, University of Leeds, Leeds, UK
National Centre for Earth Observation, University of Leeds, Leeds, UK
School of Earth and Environment, University of Leeds, Leeds, UK
National Centre for Atmospheric Science (NCAS-Climate), University of Leeds, UK
Juan Carlos Antuña Marrero
Department of Theoretical Physics, Atomic and Optics, University of Valladolid, Valladolid, Spain
Sarah E. Shallcross
School of Earth and Environment, University of Leeds, Leeds, UK
Martyn P. Chipperfield
School of Earth and Environment, University of Leeds, Leeds, UK
National Centre for Earth Observation, University of Leeds, Leeds, UK
Kenneth S. Carslaw
School of Earth and Environment, University of Leeds, Leeds, UK
Lauren Marshall
School of Earth and Environment, University of Leeds, Leeds, UK
Department of Chemistry, University of Cambridge, Cambridge, UK
N. Luke Abraham
Department of Chemistry, University of Cambridge, Cambridge, UK
National Centre for Atmospheric Science, University of Cambridge, UK
Colin E. Johnson
National Centre for Atmospheric Science (NCAS-Climate), University of Leeds, UK
Met Office Hadley Centre, Exeter, UK
Data sets
UMUKCA Volcanic forcing data from Dhomse et al., 2020, ACP Sandip S. Dhomse, Graham W. Mann, Juan Carlos Antuña Marrero, Sarah E. Shallcross, Martyn P. Chipperfield, Kenneth S. Carslaw, Lauren Marshall, N. Luke Abraham, and Colin E. Johnson https://doi.org/10.17632/n3g2htz9hk.1
Short summary
We confirm downward adjustment of SO2 emission to simulate the Pinatubo aerosol cloud with aerosol microphysics models. Similar adjustment is also needed to simulate the El Chichón and Agung volcanic cloud, indicating potential missing removal or vertical redistribution process in models. Important inhomogeneities in the CMIP6 forcing datasets after Agung and El Chichón eruptions are difficult to reconcile. Quasi-biennial oscillation plays an important role in modifying stratospheric warming.
We confirm downward adjustment of SO2 emission to simulate the Pinatubo aerosol cloud with...
Altmetrics
Final-revised paper
Preprint