Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12813-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12813-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem
Department of Physics, University of Toronto, Toronto, ON, Canada
Kimberly Strong
Department of Physics, University of Toronto, Toronto, ON, Canada
Dylan B. A. Jones
Department of Physics, University of Toronto, Toronto, ON, Canada
Thomas Blumenstock
Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, Germany
Stephanie Conway
Department of Physics, University of Toronto, Toronto, ON, Canada
Jenny A. Fisher
Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, NSW, Australia
James W. Hannigan
National Center for Atmospheric Research, Boulder, CO, USA
Frank Hase
Karlsruhe Institute of Technology, IMK-ASF, Karlsruhe, Germany
Yasuko Kasai
National Institute for Information and Communications Technology (NICT), Tokyo, Japan
Emmanuel Mahieu
Institute of Astrophysics and Geophysics, University of Liège, Liège, Belgium
Maria Makarova
St. Petersburg State University, St. Petersburg, Russia
Isamu Morino
National Institute for Environmental Studies (NIES), Tsukuba, Japan
Tomoo Nagahama
Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan
Justus Notholt
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Ivan Ortega
National Center for Atmospheric Research, Boulder, CO, USA
Mathias Palm
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Anatoly V. Poberovskii
St. Petersburg State University, St. Petersburg, Russia
Ralf Sussmann
Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany
Thorsten Warneke
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Data sets
AERONET datasets Arosol Robotic Network https://aeronet.gsfc.nasa.gov/cgi-bin/draw_map_display_aod_v3
geoschem/geos-chem: GEOS-Chem 12.1.1 The International GEOS-Chem User Community https://doi.org/10.5281/zenodo.2249246
FLEXPART dispersion model Flexible Particle Model Developers https://www.flexpart.eu/downloads
Short summary
This paper describes the use of a network of 10 Arctic and midlatitude ground-based FTIR measurement sites to detect enhancements of the wildfire tracers carbon monoxide, hydrogen cyanide, and ethane from 2003 to 2018. A tagged CO GEOS-Chem simulation is used for source attribution and to evaluate the relative contribution of CO sources to the FTIR measurements. The use of FTIR measurements allowed for the emission ratios of hydrogen cyanide and ethane to be quantified.
This paper describes the use of a network of 10 Arctic and midlatitude ground-based FTIR...
Altmetrics
Final-revised paper
Preprint