Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 17
Atmos. Chem. Phys., 20, 10493–10511, 2020
https://doi.org/10.5194/acp-20-10493-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 10493–10511, 2020
https://doi.org/10.5194/acp-20-10493-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Sep 2020

Research article | 09 Sep 2020

Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia

Jean-Louis Bonne et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jean-Louis Bonne on behalf of the Authors (28 May 2020)  Author's response    Manuscript
ED: Publish subject to technical corrections (05 Jul 2020) by Jui-Yuan Christine Chiu
Publications Copernicus
Download
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
This study introduces 2 years of continuous near-surface in situ observations of the stable...
Citation
Altmetrics
Final-revised paper
Preprint