Articles | Volume 19, issue 2
https://doi.org/10.5194/acp-19-941-2019
https://doi.org/10.5194/acp-19-941-2019
Research article
 | 
24 Jan 2019
Research article |  | 24 Jan 2019

Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility

Jian Wang, John E. Shilling, Jiumeng Liu, Alla Zelenyuk, David M. Bell, Markus D. Petters, Ryan Thalman, Fan Mei, Rahul A. Zaveri, and Guangjie Zheng

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jian Wang on behalf of the Authors (21 Nov 2018)  Author's response   Manuscript 
ED: Publish as is (21 Nov 2018) by Maria Cristina Facchini
AR by Jian Wang on behalf of the Authors (01 Dec 2018)
Download
Short summary
Earlier studies showed organic hygroscopicity increases with oxidation level. Such increases have been attributed to higher water solubility for more oxidized organics. By systematically varying the water content of activating droplets, we show that for secondary organic aerosols, essentially all organics are dissolved at the point of droplet activation. Therefore, the organic hygroscopicity is not limited by solubility but is dictated mainly by the molecular weight of organic species.
Altmetrics
Final-revised paper
Preprint