Articles | Volume 19, issue 10
https://doi.org/10.5194/acp-19-7151-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-7151-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implication of strongly increased atmospheric methane concentrations for chemistry–climate connections
Franziska Winterstein
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Fabian Tanalski
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
now at: MERPH-IP Patentanwälte PartG mbB, Munich, Germany
Patrick Jöckel
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Martin Dameris
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Michael Ponater
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut
für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Viewed
Total article views: 4,548 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Jan 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,227 | 1,243 | 78 | 4,548 | 323 | 89 | 81 |
- HTML: 3,227
- PDF: 1,243
- XML: 78
- Total: 4,548
- Supplement: 323
- BibTeX: 89
- EndNote: 81
Total article views: 3,823 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 May 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,875 | 875 | 73 | 3,823 | 207 | 84 | 77 |
- HTML: 2,875
- PDF: 875
- XML: 73
- Total: 3,823
- Supplement: 207
- BibTeX: 84
- EndNote: 77
Total article views: 725 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Jan 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
352 | 368 | 5 | 725 | 116 | 5 | 4 |
- HTML: 352
- PDF: 368
- XML: 5
- Total: 725
- Supplement: 116
- BibTeX: 5
- EndNote: 4
Viewed (geographical distribution)
Total article views: 4,548 (including HTML, PDF, and XML)
Thereof 4,290 with geography defined
and 258 with unknown origin.
Total article views: 3,823 (including HTML, PDF, and XML)
Thereof 3,713 with geography defined
and 110 with unknown origin.
Total article views: 725 (including HTML, PDF, and XML)
Thereof 577 with geography defined
and 148 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
21 citations as recorded by crossref.
- Methane Emissions in a Chemistry‐Climate Model: Feedbacks and Climate Response I. Heimann et al. 10.1029/2019MS002019
- Apportionment of the Pre‐Industrial to Present‐Day Climate Forcing by Methane Using UKESM1: The Role of the Cloud Radiative Effect F. O’Connor et al. 10.1029/2022MS002991
- Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0) F. Winterstein & P. Jöckel 10.5194/gmd-14-661-2021
- Early Eocene low orography and high methane enhance Arctic warming via polar stratospheric clouds D. Dutta et al. 10.1038/s41561-023-01298-w
- Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity C. Cheng & S. Redfern 10.1038/s41467-022-31345-w
- How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? A. Reisinger et al. 10.1098/rsta.2020.0452
- Retrieving Atmospheric Gas Profiles Using FY-3E/HIRAS-II Infrared Hyperspectral Data by Neural Network Approach H. Li et al. 10.3390/rs15112931
- CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool M. Sandstad et al. 10.5194/gmd-17-6589-2024
- Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020 R. Neale et al. 10.1007/s43630-020-00001-x
- Using greenhouse gases in the synthesis gas production processes: Thermodynamic conditions J. Szczygieł et al. 10.1016/j.jenvman.2022.116463
- Determination of Household Green Waste Fractions to Methane and its Economic Value E. Joelianto & H. Edyson 10.1088/1757-899X/1096/1/012136
- Coastal Forest Seawater Exposure Increases Stem Methane Concentration M. Norwood et al. 10.1029/2020JG005915
- Present-day methane shortwave absorption mutes surface warming relative to preindustrial conditions R. Allen et al. 10.5194/acp-24-11207-2024
- Unveiling the drivers of atmospheric methane variability in Iran: A 20-year exploration using spatiotemporal modeling and machine learning S. Mousavi et al. 10.1016/j.envc.2024.100946
- Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere M. Kilian et al. 10.5194/acp-20-11697-2020
- The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing D. Elsbury et al. 10.5194/acp-23-5101-2023
- Distribution and sea-to-air fluxes of nitrous oxide and methane from a seasonally hypoxic coastal zone in the southeastern Arabian Sea K. Arya et al. 10.1016/j.marpolbul.2024.116614
- Updating the radiation infrastructure in MESSy (based on MESSy version 2.55) M. Nützel et al. 10.5194/gmd-17-5821-2024
- Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean L. Stecher et al. 10.5194/acp-21-731-2021
- Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1 F. O'Connor et al. 10.5194/acp-21-1211-2021
- Analysis of recent lower-stratospheric ozone trends in chemistry climate models S. Dietmüller et al. 10.5194/acp-21-6811-2021
21 citations as recorded by crossref.
- Methane Emissions in a Chemistry‐Climate Model: Feedbacks and Climate Response I. Heimann et al. 10.1029/2019MS002019
- Apportionment of the Pre‐Industrial to Present‐Day Climate Forcing by Methane Using UKESM1: The Role of the Cloud Radiative Effect F. O’Connor et al. 10.1029/2022MS002991
- Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0) F. Winterstein & P. Jöckel 10.5194/gmd-14-661-2021
- Early Eocene low orography and high methane enhance Arctic warming via polar stratospheric clouds D. Dutta et al. 10.1038/s41561-023-01298-w
- Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity C. Cheng & S. Redfern 10.1038/s41467-022-31345-w
- How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? A. Reisinger et al. 10.1098/rsta.2020.0452
- Retrieving Atmospheric Gas Profiles Using FY-3E/HIRAS-II Infrared Hyperspectral Data by Neural Network Approach H. Li et al. 10.3390/rs15112931
- CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool M. Sandstad et al. 10.5194/gmd-17-6589-2024
- Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020 R. Neale et al. 10.1007/s43630-020-00001-x
- Using greenhouse gases in the synthesis gas production processes: Thermodynamic conditions J. Szczygieł et al. 10.1016/j.jenvman.2022.116463
- Determination of Household Green Waste Fractions to Methane and its Economic Value E. Joelianto & H. Edyson 10.1088/1757-899X/1096/1/012136
- Coastal Forest Seawater Exposure Increases Stem Methane Concentration M. Norwood et al. 10.1029/2020JG005915
- Present-day methane shortwave absorption mutes surface warming relative to preindustrial conditions R. Allen et al. 10.5194/acp-24-11207-2024
- Unveiling the drivers of atmospheric methane variability in Iran: A 20-year exploration using spatiotemporal modeling and machine learning S. Mousavi et al. 10.1016/j.envc.2024.100946
- Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere M. Kilian et al. 10.5194/acp-20-11697-2020
- The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing D. Elsbury et al. 10.5194/acp-23-5101-2023
- Distribution and sea-to-air fluxes of nitrous oxide and methane from a seasonally hypoxic coastal zone in the southeastern Arabian Sea K. Arya et al. 10.1016/j.marpolbul.2024.116614
- Updating the radiation infrastructure in MESSy (based on MESSy version 2.55) M. Nützel et al. 10.5194/gmd-17-5821-2024
- Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean L. Stecher et al. 10.5194/acp-21-731-2021
- Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1 F. O'Connor et al. 10.5194/acp-21-1211-2021
- Analysis of recent lower-stratospheric ozone trends in chemistry climate models S. Dietmüller et al. 10.5194/acp-21-6811-2021
Latest update: 20 Nov 2024
Short summary
The atmospheric concentrations of the anthropogenic greenhouse gas methane are predicted to rise in the future. In this paper we investigate how very strong methane concentrations will impact the atmosphere. We analyse two experiments, one with doubled and one with quintupled methane concentrations and focus on the rapid atmospheric changes before the ocean adjusts to the induced
forcing. In particular these are changes in temperature, ozone, the hydroxyl radical and stratospheric water vapour.
The atmospheric concentrations of the anthropogenic greenhouse gas methane are predicted to rise...
Altmetrics
Final-revised paper
Preprint