Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 19, issue 10
Atmos. Chem. Phys., 19, 6969–6984, 2019
https://doi.org/10.5194/acp-19-6969-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 19, 6969–6984, 2019
https://doi.org/10.5194/acp-19-6969-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 May 2019

Research article | 24 May 2019

On the distinctiveness of observed oceanic raindrop distributions

David Ian Duncan et al.

Viewed

Total article views: 1,125 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
823 278 24 1,125 23 16
  • HTML: 823
  • PDF: 278
  • XML: 24
  • Total: 1,125
  • BibTeX: 23
  • EndNote: 16
Views and downloads (calculated since 01 Feb 2019)
Cumulative views and downloads (calculated since 01 Feb 2019)

Viewed (geographical distribution)

Total article views: 853 (including HTML, PDF, and XML) Thereof 846 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

Latest update: 13 Aug 2020
Publications Copernicus
Download
Short summary
Raindrop size distributions have not been systematically studied over the oceans but are significant for remotely sensing, assimilating, and modeling rain. Here we investigate raindrop populations with new global in situ data, compare them against satellite estimates, and explore a new technique to classify the shapes of these distributions. The results indicate the inadequacy of a commonly assumed shape in some regions and the sizable impact of shape variability on satellite measurements.
Raindrop size distributions have not been systematically studied over the oceans but are...
Citation
Final-revised paper
Preprint