Articles | Volume 19, issue 1
Atmos. Chem. Phys., 19, 639–648, 2019
https://doi.org/10.5194/acp-19-639-2019

Special issue: Particle-based methods for simulating atmospheric aerosol...

Atmos. Chem. Phys., 19, 639–648, 2019
https://doi.org/10.5194/acp-19-639-2019

Research article 17 Jan 2019

Research article | 17 Jan 2019

Cloud-droplet growth due to supersaturation fluctuations in stratiform clouds

Xiang-Yu Li et al.

Related authors

Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives warm extremes in the high Arctic
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-23,https://doi.org/10.5194/wcd-2021-23, 2021
Revised manuscript under review for WCD
Short summary
Processes controlling the vertical aerosol distribution in marine stratocumulus regions – a sensitivity study using the climate model NorESM1-M
Lena Frey, Frida A.-M. Bender, and Gunilla Svensson
Atmos. Chem. Phys., 21, 577–595, https://doi.org/10.5194/acp-21-577-2021,https://doi.org/10.5194/acp-21-577-2021, 2021
Short summary
An EC-Earth coupled atmosphere–ocean single-column model (AOSCM.v1_EC-Earth3) for studying coupled marine and polar processes
Kerstin Hartung, Gunilla Svensson, Hamish Struthers, Anna-Lena Deppenmeier, and Wilco Hazeleger
Geosci. Model Dev., 11, 4117–4137, https://doi.org/10.5194/gmd-11-4117-2018,https://doi.org/10.5194/gmd-11-4117-2018, 2018
Short summary
Cloud albedo changes in response to anthropogenic sulfate and non-sulfate aerosol forcings in CMIP5 models
Lena Frey, Frida A.-M. Bender, and Gunilla Svensson
Atmos. Chem. Phys., 17, 9145–9162, https://doi.org/10.5194/acp-17-9145-2017,https://doi.org/10.5194/acp-17-9145-2017, 2017
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Understanding the model representation of clouds based on visible and infrared satellite observations
Stefan Geiss, Leonhard Scheck, Alberto de Lozar, and Martin Weissmann
Atmos. Chem. Phys., 21, 12273–12290, https://doi.org/10.5194/acp-21-12273-2021,https://doi.org/10.5194/acp-21-12273-2021, 2021
Short summary
Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao
Atmos. Chem. Phys., 21, 12317–12329, https://doi.org/10.5194/acp-21-12317-2021,https://doi.org/10.5194/acp-21-12317-2021, 2021
Short summary
Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067, https://doi.org/10.5194/acp-21-12049-2021,https://doi.org/10.5194/acp-21-12049-2021, 2021
Short summary
Aitken mode particles as CCN in aerosol- and updraft-sensitive regimes of cloud droplet formation
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740, https://doi.org/10.5194/acp-21-11723-2021,https://doi.org/10.5194/acp-21-11723-2021, 2021
Short summary
Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process
Georgia Sotiropoulou, Luisa Ickes, Athanasios Nenes, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 9741–9760, https://doi.org/10.5194/acp-21-9741-2021,https://doi.org/10.5194/acp-21-9741-2021, 2021
Short summary

Cited articles

Berry, E. X. and Reinhardt, R. L.: An analysis of cloud drop growth by collection: Part I. Double distributions, J. Atmos. Sci., 31, 1814–1824, 1974. a
Brandenburg, A.: Pencil Code, https://doi.org/10.5281/zenodo.2315093, 2018. a, b
Brenguier, J.-L., Bourrianne, T., Coelho, A. A., Isbert, J., Peytavi, R., Trevarin, D., and Weschler, P.: Improvements of droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe), J. Atmos. Ocean. Tech., 15, 1077–1090, 1998. a, b
Chandrakar, K. K., Cantrell, W., Chang, K., Ciochetto, D., Niedermeier, D., Ovchinnikov, M., Shaw, R. A., and Yang, F.: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions, P. Natl. Acad. Sci., 113, 14243–14248, 2016. a
Chen, S., Yau, M., and Bartello, P.: Turbulence effects of collision efficiency and broadening of droplet size distribution in cumulus clouds, J. Atmos. Sci., 75, 203–217, 2018. a
Download
Short summary
The broadening of droplet size distributions in stratiform clouds, where the updraft velocity is almost zero, is puzzling. Without turbulence, the classical treatment of condensational growth of cloud droplets fails to explain this broadening. We investigated the time evolution of droplet size distributions using direct numerical simulations, where turbulence is resolved into the smallest scales. We found that the broadening is due to the turbulence-facilitated supersaturation fluctuations.
Altmetrics
Final-revised paper
Preprint