Articles | Volume 19, issue 4
https://doi.org/10.5194/acp-19-2701-2019
https://doi.org/10.5194/acp-19-2701-2019
Research article
 | 
01 Mar 2019
Research article |  | 01 Mar 2019

Effect of salt seed particle surface area, composition and phase on secondary organic aerosol mass yields in oxidation flow reactors

Erik Ahlberg, Axel Eriksson, William H. Brune, Pontus Roldin, and Birgitta Svenningsson

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Erik Ahlberg on behalf of the Authors (28 Jan 2019)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (29 Jan 2019) by Barbara Ervens
RR by Anonymous Referee #1 (09 Feb 2019)
ED: Publish as is (11 Feb 2019) by Barbara Ervens
AR by Erik Ahlberg on behalf of the Authors (12 Feb 2019)
Download
Short summary
The effects of wet or dry salt seed particle concentration (ammonium nitrate and ammonium sulphate) on secondary organic aerosol mass yields from a mixture of m-xylene and α-pinene were examined in an oxidation flow reactor. The experiments confirmed that increasing the condensation sink significantly increases the particle mass yields in oxidation flow reactors. Further, wet seed particles increased the particle mass yield by 60 % more than dry particles.
Altmetrics
Final-revised paper
Preprint