Articles | Volume 19, issue 3
https://doi.org/10.5194/acp-19-1801-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-1801-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A top-down assessment using OMI NO2 suggests an underestimate in the NOx emissions inventory in Seoul, South Korea, during KORUS-AQ
Energy Systems Division, Argonne National Laboratory, Argonne, IL
60439, USA
Consortium for Advanced Science and Engineering, University of
Chicago, Chicago, IL 60637, USA
Pablo E. Saide
Department of Atmospheric and Oceanic Sciences, Institute of the
Environment and Sustainability, University of California – Los Angeles, Los
Angeles, CA 90095, USA
Lok N. Lamsal
Goddard Earth Sciences Technology and Research, Universities Space
Research Association, Columbia, MD 21046, USA
NASA Goddard Space Flight Center, Code 614, Greenbelt, MD 20771, USA
Benjamin de Foy
Department of Earth and Atmospheric Sciences, Saint Louis University,
St. Louis, MO 63108, USA
Zifeng Lu
Energy Systems Division, Argonne National Laboratory, Argonne, IL
60439, USA
Consortium for Advanced Science and Engineering, University of
Chicago, Chicago, IL 60637, USA
Jung-Hun Woo
Konkuk University, 05029 Seoul, South Korea
Younha Kim
Konkuk University, 05029 Seoul, South Korea
Jinseok Kim
Konkuk University, 05029 Seoul, South Korea
School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, USA
Gregory Carmichael
Department of Chemical and Biochemical Engineering, University of
Iowa, Iowa City, IA 52242, USA
David G. Streets
Energy Systems Division, Argonne National Laboratory, Argonne, IL
60439, USA
Consortium for Advanced Science and Engineering, University of
Chicago, Chicago, IL 60637, USA
Data sets
OMI/Aura Nitrogen Dioxide (NO2) Total and Tropospheric Column 1-orbit L2 Swath 13x24 km V003 N. A. Krotkov, L. N. Lamsal, S. V. Marchenko, E. A. Celarier, E. J. Bucsela, W. H. Swartz, and P. Veefkind https://doi.org/10.5067/Aura/OMI/DATA2017
Korea-United States Air Quality Field Study KORUS-AQ https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01
Short summary
Using satellite data, we are able to estimate the emissions of NOx (NOx=NO+NO2), a toxic group of air pollutants, in the Seoul metropolitan area. We first develop an enhanced satellite product that better observes NO2 in urban regions. Using this new product, we derive NOx emissions to be twice as large as the emissions reported by the South Korean government. The implication is that the measures taken to reduce NOx emissions in South Korea have not been as effective as regulators have thought.
Using satellite data, we are able to estimate the emissions of NOx (NOx=NO+NO2), a toxic group...
Altmetrics
Final-revised paper
Preprint