Articles | Volume 19, issue 23
https://doi.org/10.5194/acp-19-15157-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-15157-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating wildfire emissions projection methods in comparisons of simulated and observed air quality
Uma Shankar
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
Donald McKenzie
School of Environmental and Forest Sciences, University of
Washington, Seattle, WA 98195, USA
Jeffrey P. Prestemon
USDA Forest Service, Southern Research Station, Research Triangle
Park, NC 27709, USA
Bok Haeng Baek
University of North Carolina at Chapel Hill – Institute for the
Environment, Chapel Hill, NC 27517, USA
Mohammed Omary
University of North Carolina at Chapel Hill – Institute for the
Environment, Chapel Hill, NC 27517, USA
Dongmei Yang
University of North Carolina at Chapel Hill – Institute for the
Environment, Chapel Hill, NC 27517, USA
Aijun Xiu
University of North Carolina at Chapel Hill – Institute for the
Environment, Chapel Hill, NC 27517, USA
Kevin Talgo
CSRA Incorporated, Research Triangle Park, NC 27709, USA
William Vizuete
CORRESPONDING AUTHOR
Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
Related authors
No articles found.
Sara L. Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, Fengkui Duan, Tao Ma, Shuping Zhang, and Kathleen Fahey
Atmos. Chem. Phys., 25, 3287–3312, https://doi.org/10.5194/acp-25-3287-2025, https://doi.org/10.5194/acp-25-3287-2025, 2025
Short summary
Short summary
In this work we implement heterogeneous sulfur chemistry into the Community Multiscale Air Quality (CMAQ) model. This new chemistry accounts for the formation of sulfate via aqueous oxidation of SO2 in aerosol liquid water and the formation of hydroxymethanesulfonate (HMS) – often confused by measurement techniques as sulfate. Model performance in predicting sulfur PM2.5 in Fairbanks, Alaska, and other places that experience dark and cold winters is improved.
Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3769, https://doi.org/10.5194/egusphere-2024-3769, 2024
Short summary
Short summary
We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from coastal upwelling systems of Peru and Chile.
Chi-Tsan Wang, Bok H. Baek, William Vizuete, Lawrence S. Engel, Jia Xing, Jaime Green, Marc Serre, Richard Strott, Jared Bowden, and Jung-Hun Woo
Earth Syst. Sci. Data, 15, 5261–5279, https://doi.org/10.5194/essd-15-5261-2023, https://doi.org/10.5194/essd-15-5261-2023, 2023
Short summary
Short summary
Hazardous air pollutant (HAP) human exposure studies usually rely on local measurements or dispersion model methods, but those methods are limited under spatial and temporal conditions. We processed the US EPA emission data to simulate the hourly HAP emission patterns and applied the chemical transport model to simulate the HAP concentrations. The modeled HAP results exhibit good agreement (R is 0.75 and NMB is −5.6 %) with observational data.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Wendell W. Walters, Madeline Karod, Emma Willcocks, Bok H. Baek, Danielle E. Blum, and Meredith G. Hastings
Atmos. Chem. Phys., 22, 13431–13448, https://doi.org/10.5194/acp-22-13431-2022, https://doi.org/10.5194/acp-22-13431-2022, 2022
Short summary
Short summary
Atmospheric ammonia and its products are a significant source of urban haze and nitrogen deposition. We have investigated the seasonal source contributions to a mid-sized city in the northeastern US megalopolis utilizing geospatial statistical analysis and novel isotopic constraints, which indicate that vehicle emissions were significant components of the urban-reduced nitrogen budget. Reducing vehicle ammonia emissions should be considered to improve ecosystems and human health.
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022, https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020, https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Short summary
Accurate model prediction of aerosol concentrations is a known challenge. It is assumed in many modeling systems that aerosols are in a homogeneously mixed phase state. It has been observed that aerosols do phase separate and can form a highly viscous organic shell with an aqueous core impacting the formation processes of aerosols. This work is a model implementation to determine an aerosol's phase state using glass transition temperature and aerosol composition.
Chi-Tsan Wang, Christine Wiedinmyer, Kirsti Ashworth, Peter C. Harley, John Ortega, Quazi Z. Rasool, and William Vizuete
Atmos. Chem. Phys., 19, 13973–13987, https://doi.org/10.5194/acp-19-13973-2019, https://doi.org/10.5194/acp-19-13973-2019, 2019
Short summary
Short summary
The legal commercialization of cannabis has created a new and almost unregulated industry. Here we present the first inventory of volatile organic compound emissions from cannabis cultivation facilities (CCFs) for Colorado. When applied within a regulatory air quality model to predict regional ozone impacts, our inventory results in net ozone formation near CCFs with the largest increases in Denver County. However, our inventory is highly uncertain and we identify future critical data needs.
Yongping Yuan, Ruoyu Wang, Ellen Cooter, Limei Ran, Prasad Daggupati, Dongmei Yang, Raghavan Srinivasan, and Anna Jalowska
Biogeosciences, 15, 7059–7076, https://doi.org/10.5194/bg-15-7059-2018, https://doi.org/10.5194/bg-15-7059-2018, 2018
Short summary
Short summary
Elevated levels of nutrients in surface water, which originate from deposition of atmospheric N, drainage from agricultural fields, and discharges from sewage treatment plants, cause explosive algal blooms that impair water quality. The complex cycling of nutrients through the land, air, and water requires an integrated multimedia modeling system linking air, land surface, and stream processes to assess their sources, transport, and transformation in large river basins for decision making.
Lakshmi Pradeepa Vennam, William Vizuete, and Saravanan Arunachalam
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-601, https://doi.org/10.5194/acp-2018-601, 2018
Revised manuscript not accepted
Short summary
Short summary
This study uses tagged tracer simulations to quantify the magnitudes of upper altitude aviation emissions that get transported to the surface. We show that only 0.6 % of these are found at surface after 90 days, and 30–40 % remain in mid-troposphere. Our findings will challenge prior studies that showed high aviation-attributable health risk, elucidate the role of aviation emissions in atmospheric composition and surface air quality, and help put these in context with other anthropogenic sources.
Maiko Arashiro, Ying-Hsuan Lin, Kenneth G. Sexton, Zhenfa Zhang, Ilona Jaspers, Rebecca C. Fry, William G. Vizuete, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 14079–14090, https://doi.org/10.5194/acp-16-14079-2016, https://doi.org/10.5194/acp-16-14079-2016, 2016
Short summary
Short summary
Atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol yields substantial SOA. Potential adverse health effects resulting from exposure to this aerosol type are largely unknown. Measurements of gene expression of known inflammatory biomarkers interleukin 8 (IL-8) and cyclooxygenase 2 (COX-2) in exposed human lung cells at the air–liquid interface showed that a dose of 0.067 μg cm−2 of isoprene SOA leads to statistically significant increases in IL-8 and COX-2 mRNA levels.
T. P. Riedel, Y.-H. Lin, Z. Zhang, K. Chu, J. A. Thornton, W. Vizuete, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 16, 1245–1254, https://doi.org/10.5194/acp-16-1245-2016, https://doi.org/10.5194/acp-16-1245-2016, 2016
Short summary
Short summary
IEPOX, a photooxidation product of isoprene, contributes to ambient secondary organic aerosol concentrations. Controlled atmospheric chamber experiments and modeling are used to extract formation rate information of chemical species that contribute to IEPOX-derived secondary organic aerosol.
L. Ran, D. H. Loughlin, D. Yang, Z. Adelman, B. H. Baek, and C. G. Nolte
Geosci. Model Dev., 8, 1775–1787, https://doi.org/10.5194/gmd-8-1775-2015, https://doi.org/10.5194/gmd-8-1775-2015, 2015
Short summary
Short summary
We present and demonstrate Version 2.0 of the Emission Scenario Projection (ESP) method. This method produces multi-decadal air pollutant emission projections suitable for air quality modeling. The method focuses on energy-related emissions, including those from the electric sector, buildings, industry and transportation. ESP v2.0 enhances ESP v1.0 by taking population growth, migration and land use change into consideration.
K. M. Seltzer, W. Vizuete, and B. H. Henderson
Atmos. Chem. Phys., 15, 5973–5986, https://doi.org/10.5194/acp-15-5973-2015, https://doi.org/10.5194/acp-15-5973-2015, 2015
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks (Alaska), the Northern Hemisphere, and the Contiguous United States
Critical load exceedances for North America and Europe using an ensemble of models and an investigation of causes of environmental impact estimate variability: an AQMEII4 study
Impacts of meteorology and emission reductions on haze pollution during the lockdown in the North China Plain
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
The surface tension and cloud condensation nuclei (CCN) activation of sea spray aerosol particles
Exploring the processes controlling secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Influence of land cover change on atmospheric organic gases, aerosols, and radiative effects
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Driving factors of aerosol acidity: a new hierarchical quantitative analysis framework and its application in Changzhou, China
Understanding the Long-term Trend of Organic Aerosol and the Influences from Anthropogenic Emission and Regional Climate Change in China
Rapid oxidation of phenolic compounds by O3 and HO●: effects of the air–water interface and mineral dust in tropospheric chemical processes
Uncertainties in the effects of organic aerosol coatings on polycyclic aromatic hydrocarbon concentrations and their estimated health effects
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Trends and Drivers of Soluble Iron Deposition from East Asian Dust to the Northwest Pacific: A Springtime Analysis (2001–2017)
Impacts of Sea Ice Leads on Sea Salt Aerosols and Atmospheric Chemistry in the Arctic
Implications of Reduced-Complexity Aerosol Thermodynamics on Organic Aerosol Mass Concentration and Composition over North America
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
Dimethyl sulfide chemistry over the industrial era: comparison of key oxidation mechanisms and long-term observations
Population exposure to outdoor NO2, black carbon, particle mass, and number concentrations over Paris with multi-scale modelling down to the street scale
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
A Comprehensive Global Modelling Assessment of Nitrate Heterogeneous Formation on Desert Dust
Modelling of atmospheric variability of gas and aerosols during the ACROSS campaign 2022 in the greater Paris area: evaluation of the meteorology, dynamics and chemistry
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Long-term trends in aerosol properties derived from AERONET measurements
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
AERO-MAP: A data compilation and modelling approach to understand spatial variability in fine and coarse mode aerosol composition
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Spatial-temporal patterns of anthropogenic and biomass burning contributions on air pollution and mortality burden changes in India from 1995 to 2014
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
Sara L. Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, Fengkui Duan, Tao Ma, Shuping Zhang, and Kathleen Fahey
Atmos. Chem. Phys., 25, 3287–3312, https://doi.org/10.5194/acp-25-3287-2025, https://doi.org/10.5194/acp-25-3287-2025, 2025
Short summary
Short summary
In this work we implement heterogeneous sulfur chemistry into the Community Multiscale Air Quality (CMAQ) model. This new chemistry accounts for the formation of sulfate via aqueous oxidation of SO2 in aerosol liquid water and the formation of hydroxymethanesulfonate (HMS) – often confused by measurement techniques as sulfate. Model performance in predicting sulfur PM2.5 in Fairbanks, Alaska, and other places that experience dark and cold winters is improved.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
Lang Liu, Xin Long, Yi Li, Zengliang Zang, Fengwen Wang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang
Atmos. Chem. Phys., 25, 1569–1585, https://doi.org/10.5194/acp-25-1569-2025, https://doi.org/10.5194/acp-25-1569-2025, 2025
Short summary
Short summary
This study uses WRF-Chem to assess how meteorological conditions and emission reductions affected fine particulate matter (PM2.5) in the North China Plain (NCP). It highlights regional disparities: in the northern NCP, adverse weather negated emission reduction effects. In contrast, the southern NCP featured a PM2.5 decrease due to favorable weather and emission reductions. The research highlighted the interaction between emissions, meteorology, and PM2.5.
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis
Atmos. Chem. Phys., 25, 1333–1351, https://doi.org/10.5194/acp-25-1333-2025, https://doi.org/10.5194/acp-25-1333-2025, 2025
Short summary
Short summary
This study investigates the impact of dust on the global radiative effect of nitrate aerosols. The results indicate both positive and negative regional shortwave and longwave radiative effects due to aerosol–radiation interactions and cloud adjustments. The global average net REari and REaci of nitrate aerosols are −0.11 and +0.17 W m−2, respectively, mainly affecting the shortwave spectrum. Sensitivity simulations evaluated the influence of mineral dust composition and emissions on the results.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
Atmos. Chem. Phys., 25, 881–903, https://doi.org/10.5194/acp-25-881-2025, https://doi.org/10.5194/acp-25-881-2025, 2025
Short summary
Short summary
We model the cloud condensation nuclei (CCN) activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants, and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updraughts.
Olivia G. Norman, Colette L. Heald, Solomon Bililign, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
Atmos. Chem. Phys., 25, 771–795, https://doi.org/10.5194/acp-25-771-2025, https://doi.org/10.5194/acp-25-771-2025, 2025
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024, https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024, https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry–climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Xiaolin Duan, Guangjie Zheng, Chuchu Chen, Qiang Zhang, and Kebin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-3584, https://doi.org/10.5194/egusphere-2024-3584, 2024
Short summary
Short summary
Aerosol acidity is an important parameter in atmospheric chemistry, while its driving factors, especially chemical profiles versus meteorological conditions, are not yet fully understood. Here, we established a hierarchical quantitative analysis framework to understand the driving factors of aerosol acidity on different time scales. Its application in Changzhou, China revealed distinct driving factors and corresponding mechanisms of aerosol acidity from annual trends to random residues.
Wenxin Zhang, Yaman Liu, Man Yue, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3420, https://doi.org/10.5194/egusphere-2024-3420, 2024
Short summary
Short summary
Understanding long-term organic aerosols (OA) trends and their driving factors is important for air quality management. Our modeling revealed that OA in China increased by 5.6% from 1990 to 2019, primarily due to a 32.3% increase in secondary organic aerosols (SOA) and an 8.1% decrease in primary organic aerosols (POA), both largely driven by changes in anthropogenic emissions. Biogenic SOA increased due to warming but showed little response to changes in anthropogenic nitrogen oxide emissions.
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024, https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Short summary
This work found that the air–water (A–W) interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees compared with the gas phase and bulk water. Some byproducts are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in O3/HO• + PhC experiments at the A–W interface and in mineral dust.
Sijia Lou, Manish Shrivastava, Alexandre Albinet, Sophie Tomaz, Deepchandra Srivastava, Olivier Favez, Huizhong Shen, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-3269, https://doi.org/10.5194/egusphere-2024-3269, 2024
Short summary
Short summary
PAHs, emitted from incomplete combustion, pose serious health risks due to their carcinogenic properties. This research demonstrates that viscous organic aerosol coatings significantly hinder PAH oxidation, with spatial distributions sensitive to the degradation modelling approach. Our findings underscore the importance of accurately modelling these processes for risk assessments, highlighting the need to consider both fresh and oxidized PAHs in evaluating human exposure and health risks.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Hanzheng Zhu, Yaman Liu, Man Yue, Shihui Feng, Pingqing Fu, Kan Huang, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2293, https://doi.org/10.5194/egusphere-2024-2293, 2024
Short summary
Short summary
Dust soluble iron deposition from East Asia plays an important role in the marine ecology of the Northwest Pacific. Using the developed model, our findings highlight a dual trend: a decrease in the overall deposition of soluble iron from dust, but an increase in the solubility of the iron itself due to the enhanced atmospheric processing. It underscores the critical roles of both dust emission and atmospheric processing in soluble iron deposition and marine ecology.
Erin Emme and Hannah Horowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3147, https://doi.org/10.5194/egusphere-2024-3147, 2024
Short summary
Short summary
There is uncertainty in the sources of Arctic cold season (November-April) sea salt aerosols. Using a chemical transport model and satellite observations, we quantify Arctic-wide sea salt aerosol emissions from fractures in sea ice, called open sea ice leads, and their atmospheric chemistry impacts for the cold season. We show sea ice leads contribute to Arctic sea salt aerosols and bromine, especially in under-observed regions.
Camilo Serrano Damha, Kyle Gorkowski, and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-2712, https://doi.org/10.5194/egusphere-2024-2712, 2024
Short summary
Short summary
Organic aerosol water content impacts the gas–particle partitioning of semivolatile organics. We used an aerosol thermodynamic model in the GEOS-Chem chemical transport model to efficiently account for organic aerosol water uptake and nonideal mixing. This led to a substantial enhancement in mean organic aerosol mass concentration with respect to GEOS-Chem's most advanced scheme. The water-sensitive scheme could be a valuable tool for reconciling model estimations and field measurements.
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Ursula A. Jongebloed, Jacob I. Chalif, Linia Tashmim, William C. Porter, Kelvin H. Bates, Qianjie Chen, Erich C. Osterberg, Bess G. Koffman, Jihong Cole-Dai, Dominic A. Winksi, David G. Ferris, Karl J. Kreutz, Cameron P. Wake, and Becky Alexander
EGUsphere, https://doi.org/10.5194/egusphere-2024-3026, https://doi.org/10.5194/egusphere-2024-3026, 2024
Short summary
Short summary
Marine phytoplankton emit dimethyl sulfide (DMS), which forms methanesulfonic acid (MSA) and sulfate. MSA concentrations in ice cores decreased over the industrial era, which has been attributed to pollution-driven changes in DMS chemistry. We use a models to investigate DMS chemistry compared to observations of DMS, MSA, and sulfate. We find that modeled DMS, MSA, and sulfate are influenced by pollution-sensitive oxidant concentrations, characterization of DMS chemistry, and other variables.
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D’Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2120, https://doi.org/10.5194/egusphere-2024-2120, 2024
Short summary
Short summary
To accurately represent the population exposure to outdoor concentrations of pollutants of health interest (NO2, black carbon, PM2.5, ultrafine particles), multi-scale modelling down to the street scale is setup and evaluated using measurements from field campaigns. An exposure scaling factor is defined, allowing to correct regional-scale simulations to evaluate population exposure. Urban heterogeneities strongly influence NO2, black carbon and ultrafine particles, but less PM2.5.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024, https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Short summary
Models were used to study ways to reduce particulate matter (PM) pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective at mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied environment in Taiwan.
Matthieu Vida, Gilles Foret, Guillaume Siour, Florian Couvidat, Olivier Favez, Gaelle Uzu, Arineh Cholakian, Sébastien Conil, Matthias Beekmann, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 24, 10601–10615, https://doi.org/10.5194/acp-24-10601-2024, https://doi.org/10.5194/acp-24-10601-2024, 2024
Short summary
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Rubén Soussé-Villa, Oriol Jorba, María Gonçalves Ageitos, Dene Bowdalo, Marc Guevara, and Carlos Pérez García-Pando
EGUsphere, https://doi.org/10.5194/egusphere-2024-2310, https://doi.org/10.5194/egusphere-2024-2310, 2024
Short summary
Short summary
Desert dust forms nitrate coatings as it travels through the atmosphere. However, current models that predict this process vary greatly due to different methods and inaccuracies. We examined how nitrate forms in a global model, focusing on how gases condense on dust, the lifespan of different particles, and the impact of alkalinity. Our findings show that models work best when they consider reversible gas condensation with alkalinity. This should lead to better estimates of climate impacts.
Ludovico Di Antonio, Matthias Beekmann, Guillaume Siour, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Joel F. de Brito, Paola Formenti, Cecile Gaimoz, Olivier Garret, Aline Gratien, Valérie Gros, Martial Haeffelin, Lelia N. Hawkins, Simone Kotthaus, Gael Noyalet, Diana Pereira, Jean-Eudes Petit, Eva Drew Pronovost, Véronique Riffault, Chenjie Yu, Gilles Foret, Jean-François Doussin, and Claudia Di Biagio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2175, https://doi.org/10.5194/egusphere-2024-2175, 2024
Short summary
Short summary
Summer 2022 has been considered a proxy for future climate scenarios, given the registered hot and dry conditions. In this paper, we used the measurements from the ACROSS campaign, occurred over the Paris area in June–July 2022, in addition to observations from existing networks, to evaluate the WRF–CHIMERE model simulation over France and the Ile-de-France regions. Results over the Ile–de–France show to be satisfactory, allowing to explain the gas and aerosol variability at the ACROSS sites.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
EGUsphere, https://doi.org/10.5194/egusphere-2024-2533, https://doi.org/10.5194/egusphere-2024-2533, 2024
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America, increased anthropogenic source over North India, increased dust activities over the Arabian Peninsula, etc.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Bin Luo, Yuqiang Zhang, Tao Tang, Hongliang Zhang, Jianlin Hu, Jiangshan Mu, Wenxing Wang, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-974, https://doi.org/10.5194/egusphere-2024-974, 2024
Short summary
Short summary
India is facing a severe air pollution crisis that poses significant health risks, particularly from PM2.5 and O3. Our study reveals rising levels of both pollutants from 1995 to 2014, leading to increased premature mortality. While anthropogenic emissions play a significant role, biomass burning also impacts air quality, in particular seasons and regions in India. This study highlights the urgent need for localized policies to protect public health amid escalating environmental challenges.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Cited articles
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate
change on wildfire across western US forests, P. Natl. Acad. Sci. USA,
113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016.
Appel, K. W., Gilliland, A., Sarwar, G., and Gilliam, R.: Evaluation of the
Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities
impacting model predictions: Part I – Ozone, Atmos. Environ., 41,
9603–9615, 2007.
Appel, K. W., Bhave, P., Gilliland, A., Sarwar, G., and Roselle, S.: Evaluation
of the Community Multiscale Air Quality (CMAQ) model version 4.5:
Sensitivities impacting model predictions: Part II – Particulate matter,
Atmos. Environ., 42, 6057–6066, 2008.
Appel, K. W., Gilliam, R. C., Davis, N., Zubrow, A., and Howard S. C.:
Overview of the Atmospheric Model Evaluation Tool (AMET) v1.1 for evaluating
meteorological and air quality models, Environ. Modell. Softw., 26,
4, 434–443, 2011.
Baek, B. H. and Seppanen, C.: Sparse Matrix Operator Kernel Emissions
(SMOKE) modeling system, Zenodo, https://doi.org/10.5281/zenodo.1421403, 2018.
Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J.,
and Mahood, A. L.: Human-started wildfires expand the fire niche across the
United States, P. Natl. Acad. Sci. USA, 114, 2946–2951, 2017.
Blanchard, C. L., Hidy, G. M., Tanenbaum, S., Edgerton, E. S., and Hartsell,
B. E.: The Southeastern Aerosol Research and Characterization (SEARCH)
study: Spatial variations and chemical climatology, 1999–2010, J. Air Waste
Manage., 63, 260–275, https://doi.org/10.1080/10962247.2012.749816, 2013.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models,
Atmos. Environ., 40, 4946–4959, 2006.
Byun, D. and Schere, K. L.: Review of the governing equations, computational
algorithms, and other components of the Models-3 Community Multiscale Air
Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–76, https://doi.org/10.1115/1.2128636, 2006.
Chang, J. S. and Hanna, S. R.: Air quality model performance evaluation,
Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004.
Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., and Pasteris, P.: A
knowledge-based approach to the statistical mapping of climate, Clim. Res.,
22, 99–113, 2002.
Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C.,
Irwin, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D., and Venkatram,
A.: A framework for evaluating regional-scale photochemical modeling
systems, Environ. Fluid Mech., 10, 471–489, https://doi.org/10.1007/s10652-009-9163-2,
2010.
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A.: Large
wildfire trends in the western United States, 1984–2011, Geophys. Res.
Lett., 41, 2928–2933, https://doi.org/10.1002/2014GL059576, 2014.
Donahue, N., Chuang, W., Epstein, S., Kroll, J., Worsnop, D., Robinson, A.,
Adams, P., and Pandis, S.: Why do organic aerosols exist? Understanding
aerosol lifetimes using the two-dimensional volatility basis set, Environ.
Chem., 10, 151–157, 2013.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar,
N.: Recommendations on statistics and benchmarks to assess photochemical
model performance J. Air Waste Manage., 67, 582–598, https://doi.org/10.1080/10962247.2016.1265027, 2017.
Fann, N., Alman, B., Broome, R. A., Morgan, G. G., Johnston, F. H., Pouliot,
G., and Rappold, A.: The health impacts and economic value of wildland fire
episodes in the U.S.: 2008–2012, Sci. Total Environ., 610–611, 802–809,
https://doi.org/10.1016/j.scitotenv.2017.08.024, 2018.
Flato, G. M.: The third version of the Canadian Centre for Climate
Modeling and Analysis Coupled Global Climate Model (CGCM3), available at:
http://www.ec.gc.ca/ccmac-cccma/default.asp?n=1299529F-1 (last access: 12 December 2018), 2005.
Fox, D. G.: Judging air quality model performance: A summary of the AMS
Workshop on Dispersion Model Performance, B. Am. Meteorol. Soc., 62,
599–609, 1981.
Gachon, P., Harding, A., and Radojevic, M.: Predictor datasets derived from
the CGCM3.1 T47 and NCEP/NCAR reanalysis, Montreìal, QC, 2008.
Gaither, C. J., Poudyal, N. C., Goodrick, S., Bowker, J. M., Malone, S., and
Gan, J.: Wildland fire risk and social vulnerability in the Southeastern
United States: An exploratory spatial data analysis approach, Forest Policy
Econ., 13, 24–36, https://doi.org/10.1016/j.forpol.2010.07.009, 2011.
Grell, G. A. and Devenyi, D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys.
Res. Lett., 29, 1693–1697, 2002.
Houyoux, M. R., Vukovich, J. M., Coats Jr., C. J. C., Wheeler, N. J. M., and
Kasibhatla, P. S.: Emission inventory development and processing for the
Seasonal Model for Regional Air Quality (SMRAQ) project, J. Geophys. Res.,
105, 9079–9090, 2000.
Jeong, D., St-Hilaire, A., Ouarda, T., and Gachon, P.: CGCM3 predictors used
for daily temperature and precipitation downscaling in southern
Queìbec, Canada, Theor. Appl. Climatol., 107, 389–406, 2012.
Joyce, L. A., Price, D. T., Coulson, D. P., McKenney, D. W., Siltanen, R.
M., Papadopol, P., and Lawrence, K.: Projecting climate change in the United
States: A technical document supporting the Forest Service RPA 2010
Assessment, USDA Forest Service, Rocky Mountain Research Station, General
Technical Report RMRS-GTR-320, Fort Collins, CO, 2014.
Katragkou, E., García-Díez, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Cardoso, R. M., Colette, A., Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, S., Soares, P. M. M., Pytharoulis, I., Tegoulias, I., Tsikerdekis, A., and Jacob, D.: Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble, Geosci. Model Dev., 8, 603–618, https://doi.org/10.5194/gmd-8-603-2015, 2015.
Kelly, J. T., Baker, K. R., Nowak, J. B., Murphy, J. G., Markovic, M. Z.,
VandenBoer, T. C., Ellis, R. A., Neuman, J. A., Weber, R. J., Roberts, J.
M., Veres, P. R., de Gouw, J. A., Beaver, M. R., Newman, S., and Misenis,
C.: Fine-scale simulation of ammonium and nitrate over the South Coast Air
Basin and San Joaquin Valley of California during CAL-NEX 2010, J. Geophys.
Res.-Atmos., 119, 3600–3614, https://doi.org/10.1002/2013JD021290, 2014.
Koo, B., Knipping, E., and Yarwood, G.: 1.5-Dimensional Volatility Basis
Set approach for modeling organic aerosol in CAMx and CMAQ, Atmos. Environ.,
95, 158–164, 2014.
Larkin, N. K., O'Neill, S. M., Solomon, R., Raffuse, S., Rorig, M.,
Peterson, J., and Ferguson, S. A.: The BlueSky smoke modeling framework,
Int. J. Wildland Fire, 18, 906–920, 2009.
Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.:
Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003,
Ecol. Appl., 19, 1003–1021, 2009.
Littell, J. S., McKenzie, D., Wan, H. Y., and Cushman, S. A.: Climate change
and future wildfire in the western USA: an ecological approach to
non-stationarity, Earths Future, 6, https://doi.org/10.1029/2018EF000878,
2018.
Liu, Y., Goodrick, S. L., and Stanturf, J.: Future U.S. wildfire potential
trends projected using a dynamically downscaled climate change scenario,
Forest Ecol. Manag., 294, 120–135, https://doi.org/10.1016/j.foreco.2012.06.049, 2013.
McKenzie, D., O'Neill, S. M., Larkin, N., and Norheim, R. A.: Integrating
models to predict regional haze from wildland fire, Ecol. Modell., 199,
278–288, 2006.
McKenzie, D., Shankar, U., Keane, R. E., Stavros, E. N., Heilman, W. E.,
Fox, D. G., and Riebau, A. C.: Smoke consequences of new wildfire regimes
driven by climate change, Earths Future, 2, 35–59, https://doi.org/10.1002/2013EF000180,
2014.
Mearns, L. O., Gutowski, W. J., Jones, R., Leung, L.-Y., McGinnis, S., Nunes,
A. M. B., and Qian, Y.: A regional climate change assessment program for
North America, Earth Obs. Sys., 90, 311–312, 2009.
Mercer, D. E. and Prestemon, J. P.: Comparing production function models for
wildfire risk analysis in the Wildland-Urban Interface, Forest Policy Econ.,
7, 782–795, https://doi.org/10.1016/j.forpol.2005.03.003, 2005.
Nakicenovic, N. and Steward, R. (Eds.): Special Report on Emissions
Scenarios: A Special Report of Working Group III of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, UK, available at: http://www.grida.no/climate/ipcc/emission/index.htm (last access: 4 August 2017), 2000.
Napelenok, S., Vedantham, R., Bhave, P. V., Pouliot, G. A., and Kwok, R. H.
F.: Source-receptor reconciliation of fine-particulate emissions from
residential wood combustion in the southeastern United States, Atmos.
Environ., 98, 454–460, 2014.
Pouliot, G., Pace, T., Roy, B., Pierce, T., and Mobley, D.: Development of a
biomass burning emission inventory by combining satellite and ground-based
information, J. Appl. Remote Sens., 2, 021501, https://doi.org/10.1117/1.2939551, 2008.
Pouliot, G., Pierce, T., Van der Gon, H. D., Schaap, M., Moran, M., and
Nopmongcol, U.: Comparing emission inventories and model-ready emission
datasets between Europe and North America for the AQMEII project, Atmos.
Environ., 53, 4–14, 2012.
Prestemon, J. P., Pye, J. M., Butry, D. T., Holmes, T. P., and Mercer, D.:
Understanding broad scale wildfire risks in a human-dominated landscape,
Forest Sci., 48, 685–693, 2002.
Prestemon, J. P., Hawbaker, T. J., Bowden, M., Carpenter, J., Scranton, S.,
Brooks, M. T., Sutphen, R., and Abt, K. L.: Wildfire Ignitions: A Review of
the Science and Recommendations for Empirical Modeling, USDA Forest Service
General Technical Report SRS-171, Asheville, NC, 2013.
Prestemon, J. P., Shankar, U., Xiu, A., Talgo, K., Yang, D., Dixon, E.,
McKenzie, D., and Abt, K.: Projecting wildfire area burned in the
south-eastern United States, 2011–2060, Int. J. Wildland Fire, 25, 715–729,
https://doi.org/10.1071/WF15124, 2016.
Prospero, J. M.: Long-range transport of mineral dust in the global
atmosphere: Impact of African dust on the environment of the southeastern
United States, P. Natl. Acad. Sci. USA, 96, 3396–3403, 1999.
Prospero, J. M., Collard, F.-X., Molinié, J., and Jeannot, A.:
Characterizing the annual cycle of African dust transport, to the Caribbean
Basin and South America and its impact on the environment and air quality,
Global Biogeochem. Cy., 29, 757–773, https://doi.org/10.1002/2013GB004802, 2014.
Pye, H. O. T., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L., Baker, K. R.,
Ayres, B. R., Bash, J. O., Baumann, K., Carter, W. P. L., Edgerton, E., Fry,
J. L., Hutzell, W. T., Schwede, D. B., and Shepson, P. B.: Modeling the
current and future roles of particulate organic nitrates in the Southeastern
United States, Environ. Sci. Technol., 49, 14195–14203, 2015.
Raffuse, S. M., Pryden, D. A., Sullivan, D. C., Larkin, N. K.,
Strand, T., and Solomon, R.: SMARTFIRE Algorithm Description, Paper prepared
for the U.S. Environmental Protection Agency, Research Triangle Park, NC, by
Sonoma Technology, Inc., Petaluma, CA, and the U.S. Forest Service, AirFire
Team, Pacific Northwest Research Laboratory, Seattle, WA STI-905517e3719,
2009.
Rappold, A., Stone, S. L., Cascio, W. E., Neas, L. M., Kilaru, V. J.,
Carraway, M. S., Szykman, J. J., Ising, A., Cleve, W. E., Meredith, J. T.,
Vaughan-Batten, H., Deyneka, L., and Devlin, R. B.: Peat bog wildfire smoke
exposure in rural North Carolina is associated with cardiopulmonary
emergency department visits assessed through syndromic surveillance,
Environ. Health Persp., 119, 1415–1420, 2011.
Rappold, A. G., Cascio, W. E., Kilaru, V. J., Stone, S. L., Neas, L. M.,
Devlin, R. B., and Diaz-Sanchez, D.: Cardio-respiratory outcomes associated
with exposure to wildfire smoke are modified by measures of community
health, Environ. Health-Glob., 11, 71–80, https://doi.org/10.1186/1476-069X-11-71,
2012.
Rappold, A. G., Fann, N. L., Crooks, J., Huang, J., Cascio, W. E., Devlin,
R. B., and Diaz-Sanchez, D.: Forecast-based interventions can reduce the
health and economic burden of wildfires, Environ. Sci. Technol., 48, 10571–10579, https://doi.org/10.1021/es5012725, 2014.
Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mobley, J.
D., and Houyoux, M.: Emissions inventory of PM2.5 trace elements across
the United States, Environ. Sci. Technol., 43, 5790–5796, 2009.
Sarwar, G., Appel, K. W., Carlton, A. G., Mathur, R., Schere, K., Zhang, R., and Majeed, M. A.: Impact of a new condensed toluene mechanism on air quality model predictions in the US, Geosci. Model Dev., 4, 183–193, https://doi.org/10.5194/gmd-4-183-2011, 2011.
Shankar, U. Prestemon, J. P., McKenzie, D., Talgo, K., Xi, A., Omary, M.,
Baek, B. H., Yang, D., and Vizuete, W.: Projecting wildfire emissions over
the south-eastern United States to mid-century, Int. J. Wildland Fire, 27,
313–328, https://doi.org/10.1071/WF17116, 2018.
Simon, H. and Bhave, P. V.: Simulating the degree of oxidation in
atmospheric organic particles, Environ. Sci. Technol., 46, 331–339, 2012.
Sisler, J. F., Huffman, D., Latimer, D. A., Malm, W. C., and Pitchford, M.
L.: Spatial and temporal patterns and the chemical composition of the haze
in the United States: An analysis of data from the IMPROVE network, 1988–1991, Cooperative Institute for Research in the Atmosphere, Colorado State
University, ISSN No. 0737-5352-26, Fort Collins, CO, 1993.
Skamarock, W., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, NCAR/TN-475+STR, Boulder, CO, 2008.
Soja, A. J., Al-Saadi, J., Giglio, L., Randall, D., Kittaka, C., Pouliot,
G., Kordzi, J. J., Raffuse, S., Pace, T. G., Pierce, T. E., Moore, T., Roy,
B., Pierce, R. B., and Szykman, J. J.: Assessing satellite-based fire data
for use in the National Emissions Inventory, J. Appl. Remote Sens., 3,
031504, https://doi.org/10.1117/1.3148859, 2009.
Spero, T. L., Otte, M. J., Bowden, J. H., and Nolte, C. G.: Improving the
representation of clouds, radiation, and precipitation using spectral
nudging in the Weather Research and Forecasting model, J. Geophys. Res.-Atmos., 119, 11682–11694, https://doi.org/10.1002/2014JD022173, 2014.
Stavros, E. N., Abatzoglou, J., Larkin, N. K., McKenzie, D., and Steel, E.
A.: Climate and very large wildland fires in the contiguous western USA,
Int. J. Wildland Fire, 23, 899–914, https://doi.org/10.1071/WF13169, 2014.
Syphard, A. D., Keeley, J. E., Pfaff, A. H., and Ferschweiler, K.: Human
presence diminishes the importance of climate in driving fire activity
across the United States, P. Natl. Acad. Sci. USA, 114, 13750–13755,
https://doi.org/10.1073/pnas.1713885114, 2017.
U.S. Census Bureau: Population estimates, 2018, available at: https://www.census.gov/programs-surveys/popest/data/data-sets.All.html, last access: 8 December 2018.
U.S. EPA: Guidance on the use of models and other analyses for demonstrating
attainment of air quality goals for ozone, PM2.5, and regional haze.
U.S. Environmental Protection Agency Report EPA-454/B-07-002, U.S.
Environmental Protection Agency, Office of Air Quality Planning and
Standards, Research Triangle Park, NC 27711, USA, available at: https://www3.epa.gov/scram001/guidance/guide/final-03-pm-rh-guidance.pdf
(last access: 12 December 2018), 2007.
Vennam, L. P., Arunachalam, S., Bowden, J., Baek, B. H., Omary, M. O.,
Vizuete, W., and Olsen, S.: Modeled Trends in Impacts of Landing and Takeoff
Aircraft Emissions on Surface Air-Quality in U.S for 2005, 2010 and 2018.
Presented at the 13th Annual CMAS Conference, 27–29 October 2014, Chapel Hill, NC, available at: https://www.cmascenter.org/conference/2014/agenda.cfm (last access: 25 November 2019), 2014.
Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D. T.,
Carter, W. P. L., and Yarwood, G.: A new condensed toluene mechanism for
Carbon Bond: CB05-TU, Atmos. Environ., 44, 5346–5355, 2010.
Wilkins, J. L., Pouliot, G., Foley, K., Appel, W., and Pierce, T.: The
impact of US wildland fires on ozone and particulate matter: a comparison of
measurements and CMAQ model predictions from 2008 to 2012, Int. J. Wildland
Fire, 27, 684–698, https://doi.org/10.1071/WF18053, 2018.
Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., Xiu, A., Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results, Geosci. Model Dev., 5, 299–312, https://doi.org/10.5194/gmd-5-299-2012, 2012.
Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye, H. O. T.: Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS, Atmos. Chem. Phys., 16, 4081–4100, https://doi.org/10.5194/acp-16-4081-2016, 2016.
Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwarz, S.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci. Lett.,
7, 26–34, 2006.
Short summary
We evaluate two wildfire emissions estimates for the southeastern US, based on projected annual areas burned in 2011–2060, against a benchmark wildfire inventory in air quality (AQ) simulations for 2010 and AQ network observations. Our emissions estimates compare well with the benchmark but all three simulations have large biases compared to observations. We find our methods suitable to assess current and future wildfire AQ impacts but also identify areas for AQ model improvements.
We evaluate two wildfire emissions estimates for the southeastern US, based on projected annual...
Similar articles
Population exposure to outdoor NO2, black...
Park et al.
Predicted impacts of heterogeneous...
Farrell et al.
Critical load exceedances for North...
Makar et al.