Articles | Volume 19, issue 23
Research article
10 Dec 2019
Research article |  | 10 Dec 2019

OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation

Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Matthew Coggon on behalf of the Authors (16 Oct 2019)  Author's response   Manuscript 
ED: Publish as is (18 Oct 2019) by Andreas Hofzumahaus
AR by Matthew Coggon on behalf of the Authors (10 Nov 2019)
Short summary
Wildfire emissions significantly contribute to adverse air quality; however, the chemical processes that lead to hazardous pollutants, such as ozone, are not fully understood. In this study, we describe laboratory experiments where we simulate the atmospheric chemistry of smoke emitted from a range of biomass fuels. We show that certain understudied compounds, such as furans and phenolic compounds, are significant contributors to pollutants formed as a result of typical atmospheric oxidation.
Final-revised paper