Articles | Volume 18, issue 12
Research article
28 Jun 2018
Research article |  | 28 Jun 2018

Can explicit convection improve modelled dust in summertime West Africa?

Alexander J. Roberts, Margaret J. Woodage, John H. Marsham, Ellie J. Highwood, Claire L. Ryder, Willie McGinty, Simon Wilson, and Julia Crook

Abstract. Global and regional models have large systematic errors in their modelled dust fields over West Africa. It is well established that cold-pool outflows from moist convection (haboobs) can raise over 50 % of the dust over parts of the Sahara and Sahel in summer, but parameterised moist convection tends to give a very poor representation of this in models. Here, we test the hypothesis that an explicit representation of convection in the Met Office Unified Model (UM) improves haboob winds and so may reduce errors in modelled dust fields. The results show that despite varying both grid spacing and the representation of convection there are only minor changes in dust aerosol optical depth (AOD) and dust mass loading fields between simulations. In all simulations there is an AOD deficit over the observed central Saharan dust maximum and a high bias in AOD along the west coast: both features are consistent with many climate (CMIP5) models. Cold-pool outflows are present in the explicit simulations and do raise dust. Consistent with this, there is an improved diurnal cycle in dust-generating winds with a seasonal peak in evening winds at locations with moist convection that is absent in simulations with parameterised convection. However, the explicit convection does not change the AOD field in the UM significantly for several reasons. Firstly, the increased windiness in the evening from haboobs is approximately balanced by a reduction in morning winds associated with the breakdown of the nocturnal low-level jet (LLJ). Secondly, although explicit convection increases the frequency of the strongest winds, they are still weaker than observed, especially close to the observed summertime Saharan dust maximum: this results from the fact that, although large mesoscale convective systems (and resultant cold pools) are generated, they have a lower frequency than observed and haboob winds are too weak. Finally, major impacts of the haboobs on winds occur over the Sahel, where, although dust uplift is known to occur in reality, uplift in the simulations is limited by a seasonally constant bare-soil fraction in the model, together with soil moisture and clay fractions which are too restrictive of dust emission in seasonally varying vegetated regions. For future studies, the results demonstrate (1) the improvements in behaviour produced by the explicit representation of convection, (2) the value of simultaneously evaluating both dust and winds and (3) the need to develop parameterisations of the land surface alongside those of dust-generating winds.

Short summary
The summer Saharan dust hotspot is seasonally tied to the occurrence of convective storms. Global weather and climate models parameterise convection and so are unable to represent their associated dust uplift (haboobs). However, this work shows that even when simulations represent convection explicitly: (1) dust fields are not strongly affected, (2) convective storms are too small, (3) haboobs are too weak and (4) the land surface (bare soil and soil moisture) is dominant in controlling dust.
Final-revised paper