Articles | Volume 18, issue 9
https://doi.org/10.5194/acp-18-6699-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-6699-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models
Simone Dietmüller
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Roland Eichinger
Ludwig Maximilians University of Munich, Meteorological Institute Munich, Munich, Germany
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Hella Garny
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Ludwig Maximilians University of Munich, Meteorological Institute Munich, Munich, Germany
Thomas Birner
Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
currently at: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Harald Boenisch
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
Giovanni Pitari
Department of Physical and Chemical Sciences, Università dell'Aquila, L'Aquila, Italy
Eva Mancini
Department of Physical and Chemical Sciences and center of Excellence CETEMPS, Università dell'Aquila, L'Aquila, Italy
Daniele Visioni
Department of Physical and Chemical Sciences and center of Excellence CETEMPS, Università dell'Aquila, L'Aquila, Italy
Andrea Stenke
Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
Laura Revell
Bodeker Scientific, Christchurch, New Zealand
Eugene Rozanov
Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
Physical-Meteorological Observatory/World Radiation Center, Davos, Switzerland
David A. Plummer
Environment and Climate Change Canada, Climate Research Division, Montréal, QC, Canada
John Scinocca
Environment and Climate Change Canada, Climate Research Division, Victoria, BC, Canada
Patrick Jöckel
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Luke Oman
National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), Greenbelt, Maryland, USA
Makoto Deushi
Meteorological Research Institute (MRI), Tsukuba, Japan
Shibata Kiyotaka
School of Environmental Science and Engineering, Kochi University of Technology, Kami, Japan
Douglas E. Kinnison
National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
Rolando Garcia
National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
Olaf Morgenstern
National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
Guang Zeng
National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
Kane Adam Stone
School of Earth Sciences, University of Melbourne, Melbourne, Australia
ARC Centre of Excellence for Climate System Science, Sydney, Australia
Robyn Schofield
School of Earth Sciences, University of Melbourne, Melbourne, Australia
ARC Centre of Excellence for Climate System Science, Sydney, Australia
Viewed
Total article views: 3,480 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Dec 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,458 | 942 | 80 | 3,480 | 337 | 99 | 77 |
- HTML: 2,458
- PDF: 942
- XML: 80
- Total: 3,480
- Supplement: 337
- BibTeX: 99
- EndNote: 77
Total article views: 2,805 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 May 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,069 | 671 | 65 | 2,805 | 337 | 84 | 61 |
- HTML: 2,069
- PDF: 671
- XML: 65
- Total: 2,805
- Supplement: 337
- BibTeX: 84
- EndNote: 61
Total article views: 675 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Dec 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
389 | 271 | 15 | 675 | 15 | 16 |
- HTML: 389
- PDF: 271
- XML: 15
- Total: 675
- BibTeX: 15
- EndNote: 16
Viewed (geographical distribution)
Total article views: 3,480 (including HTML, PDF, and XML)
Thereof 3,467 with geography defined
and 13 with unknown origin.
Total article views: 2,805 (including HTML, PDF, and XML)
Thereof 2,789 with geography defined
and 16 with unknown origin.
Total article views: 675 (including HTML, PDF, and XML)
Thereof 678 with geography defined
and -3 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
26 citations as recorded by crossref.
- Stratospheric Adiabatic Mixing Rates Derived From the Vertical Gradient of Age of Air M. Linz et al. 10.1029/2021JD035199
- Stratospheric water vapor affecting atmospheric circulation E. Charlesworth et al. 10.1038/s41467-023-39559-2
- Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean L. Stecher et al. 10.5194/acp-21-731-2021
- How robust are stratospheric age of air trends from different reanalyses? F. Ploeger et al. 10.5194/acp-19-6085-2019
- Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multi‐Decadal Variability F. Iglesias‐Suarez et al. 10.1029/2020GL092162
- An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO<sub>2</sub> or accumulation-mode sulfuric acid aerosols D. Weisenstein et al. 10.5194/acp-22-2955-2022
- The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses A. Karagodin-Doyennel et al. 10.5194/acp-22-15333-2022
- Exploring accumulation-mode H<sub>2</sub>SO<sub>4</sub> versus SO<sub>2</sub> stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model S. Vattioni et al. 10.5194/acp-19-4877-2019
- Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative C. Orbe et al. 10.5194/acp-20-3809-2020
- Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks H. Garny et al. 10.5194/acp-24-4193-2024
- Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model L. Revell et al. 10.5194/acp-18-16155-2018
- The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models A. Chrysanthou et al. 10.5194/acp-19-11559-2019
- The impact of sulfur hexafluoride (SF<sub>6</sub>) sinks on age of air climatologies and trends S. Loeffel et al. 10.5194/acp-22-1175-2022
- Seasonal, interannual and decadal variability of tropospheric ozone in the North Atlantic: comparison of UM-UKCA and remote sensing observations for 2005–2018 M. Russo et al. 10.5194/acp-23-6169-2023
- Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation T. Sukhodolov et al. 10.5194/gmd-14-5525-2021
- Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model D. Minganti et al. 10.1029/2021JD036390
- Reduced Poleward Transport Due to Stratospheric Heating Under Stratospheric Aerosols Geoengineering D. Visioni et al. 10.1029/2020GL089470
- Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models G. Zeng et al. 10.1029/2022JD036452
- Extratropical age of air trends and causative factors in climate projection simulations P. Šácha et al. 10.5194/acp-19-7627-2019
- Analysis of recent lower-stratospheric ozone trends in chemistry climate models S. Dietmüller et al. 10.5194/acp-21-6811-2021
- Climatological impact of the Brewer–Dobson circulation on the N<sub>2</sub>O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses D. Minganti et al. 10.5194/acp-20-12609-2020
- Effects of missing gravity waves on stratospheric dynamics; part 1: climatology R. Eichinger et al. 10.1007/s00382-020-05166-w
- The global diabatic circulation of the stratosphere as a metric for the Brewer–Dobson circulation M. Linz et al. 10.5194/acp-19-5069-2019
- The influence of mixing on the stratospheric age of air changes in the 21st century R. Eichinger et al. 10.5194/acp-19-921-2019
- Analysis of the global atmospheric background sulfur budget in a multi-model framework C. Brodowsky et al. 10.5194/acp-24-5513-2024
- On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics A. Kuchar et al. 10.5194/wcd-1-481-2020
26 citations as recorded by crossref.
- Stratospheric Adiabatic Mixing Rates Derived From the Vertical Gradient of Age of Air M. Linz et al. 10.1029/2021JD035199
- Stratospheric water vapor affecting atmospheric circulation E. Charlesworth et al. 10.1038/s41467-023-39559-2
- Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean L. Stecher et al. 10.5194/acp-21-731-2021
- How robust are stratospheric age of air trends from different reanalyses? F. Ploeger et al. 10.5194/acp-19-6085-2019
- Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multi‐Decadal Variability F. Iglesias‐Suarez et al. 10.1029/2020GL092162
- An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO<sub>2</sub> or accumulation-mode sulfuric acid aerosols D. Weisenstein et al. 10.5194/acp-22-2955-2022
- The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses A. Karagodin-Doyennel et al. 10.5194/acp-22-15333-2022
- Exploring accumulation-mode H<sub>2</sub>SO<sub>4</sub> versus SO<sub>2</sub> stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model S. Vattioni et al. 10.5194/acp-19-4877-2019
- Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative C. Orbe et al. 10.5194/acp-20-3809-2020
- Correction of stratospheric age of air (AoA) derived from sulfur hexafluoride (SF6) for the effect of chemical sinks H. Garny et al. 10.5194/acp-24-4193-2024
- Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model L. Revell et al. 10.5194/acp-18-16155-2018
- The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models A. Chrysanthou et al. 10.5194/acp-19-11559-2019
- The impact of sulfur hexafluoride (SF<sub>6</sub>) sinks on age of air climatologies and trends S. Loeffel et al. 10.5194/acp-22-1175-2022
- Seasonal, interannual and decadal variability of tropospheric ozone in the North Atlantic: comparison of UM-UKCA and remote sensing observations for 2005–2018 M. Russo et al. 10.5194/acp-23-6169-2023
- Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation T. Sukhodolov et al. 10.5194/gmd-14-5525-2021
- Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model D. Minganti et al. 10.1029/2021JD036390
- Reduced Poleward Transport Due to Stratospheric Heating Under Stratospheric Aerosols Geoengineering D. Visioni et al. 10.1029/2020GL089470
- Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models G. Zeng et al. 10.1029/2022JD036452
- Extratropical age of air trends and causative factors in climate projection simulations P. Šácha et al. 10.5194/acp-19-7627-2019
- Analysis of recent lower-stratospheric ozone trends in chemistry climate models S. Dietmüller et al. 10.5194/acp-21-6811-2021
- Climatological impact of the Brewer–Dobson circulation on the N<sub>2</sub>O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses D. Minganti et al. 10.5194/acp-20-12609-2020
- Effects of missing gravity waves on stratospheric dynamics; part 1: climatology R. Eichinger et al. 10.1007/s00382-020-05166-w
- The global diabatic circulation of the stratosphere as a metric for the Brewer–Dobson circulation M. Linz et al. 10.5194/acp-19-5069-2019
- The influence of mixing on the stratospheric age of air changes in the 21st century R. Eichinger et al. 10.5194/acp-19-921-2019
- Analysis of the global atmospheric background sulfur budget in a multi-model framework C. Brodowsky et al. 10.5194/acp-24-5513-2024
- On the intermittency of orographic gravity wave hotspots and its importance for middle atmosphere dynamics A. Kuchar et al. 10.5194/wcd-1-481-2020
Discussed (final revised paper)
Latest update: 13 Oct 2024
Altmetrics
Final-revised paper
Preprint