Changes in sea-surface temperature and atmospheric circulation patterns associated with reductions in Arctic sea ice cover in recent decades
Abstract. In recent decades, the Arctic sea ice has been declining at a rapid pace as the Arctic warms at a rate of twice the global average. The underlying physical mechanisms for the Arctic warming and accelerated sea ice retreat are not fully understood. In this study, we apply a relatively novel statistical method called self-organizing maps (SOM) along with composite analysis to examine the trend and variability of autumn Arctic sea ice in the past three decades and their relationships to large-scale atmospheric circulation changes. Our statistical results show that the anomalous autumn Arctic dipole (AD) (Node 1) and the Arctic Oscillation (AO) (Node 9) could explain in a statistical sense as much as 50 % of autumn sea ice decline between 1979 and 2016. The Arctic atmospheric circulation anomalies associated with anomalous sea-surface temperature (SST) patterns over the North Pacific and North Atlantic influence Arctic sea ice primarily through anomalous temperature and water vapor advection and associated radiative feedback.