Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 18, issue 16
Atmos. Chem. Phys., 18, 12123–12140, 2018
https://doi.org/10.5194/acp-18-12123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Global and regional assessment of intercontinental transport...

Atmos. Chem. Phys., 18, 12123–12140, 2018
https://doi.org/10.5194/acp-18-12123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Aug 2018

Research article | 22 Aug 2018

Average versus high surface ozone levels over the continental USA: model bias, background influences, and interannual variability

Jean J. Guo et al.

Viewed

Total article views: 3,162 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,871 1,257 34 3,162 178 27 37
  • HTML: 1,871
  • PDF: 1,257
  • XML: 34
  • Total: 3,162
  • Supplement: 178
  • BibTeX: 27
  • EndNote: 37
Views and downloads (calculated since 26 Feb 2018)
Cumulative views and downloads (calculated since 26 Feb 2018)

Viewed (geographical distribution)

Total article views: 2,162 (including HTML, PDF, and XML) Thereof 2,141 with geography defined and 21 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 03 Aug 2020
Publications Copernicus
Download
Short summary
We use the GEOS-Chem model to estimate the influence from anthropogenic and background sources to ozone over the USA. Novel findings include the point that year-to-year background variability on the 10 highest observed ozone days is driven mainly by natural sources and not international or intercontinental pollution transport. High positive model biases during summer are associated with regional ozone production. The EPA 3-year average metric falls short of its aim to remove natural variability.
We use the GEOS-Chem model to estimate the influence from anthropogenic and background sources...
Citation
Final-revised paper
Preprint