Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Articles | Volume 18, issue 15
https://doi.org/10.5194/acp-18-11221-2018
https://doi.org/10.5194/acp-18-11221-2018
Research article
 | 
13 Aug 2018
Research article |  | 13 Aug 2018

Air quality simulations for London using a coupled regional-to-local modelling system

Christina Hood, Ian MacKenzie, Jenny Stocker, Kate Johnson, David Carruthers, Massimo Vieno, and Ruth Doherty

Abstract. A coupled regional-to-local modelling system comprising a regional chemistry–climate model with 5 km horizontal resolution (EMEP4UK) and an urban dispersion and chemistry model with explicit road source emissions (ADMS-Urban) has been used to simulate air quality in 2012 across London. The study makes use of emission factors for NOx and NO2 and non-exhaust emission rates of PM10 and PM2.5 which have been adjusted compared to standard factors to reflect real-world emissions, with increases in total emissions of around 30 % for these species. The performance of the coupled model and each of the two component models is assessed against measurements from background and near-road sites in London using a range of metrics concerning annual averages, high hourly average concentrations and diurnal cycles. The regional model shows good performance compared to measurements for background sites for these metrics, but under-predicts concentrations of all pollutants except O3 at near-road sites due to the low resolution of input emissions and calculations. The coupled model shows good performance at both background and near-road sites, which is broadly comparable with that of the urban model that uses measured concentrations as regional background, except for PM2.5 where the under-prediction of the regional model causes the coupled model to also under-predict concentrations. Using the coupled model, it is estimated that 13 % of the area of London exceeded the EU limit value of 40 µg m−3 for annual average NO2 in 2012, whilst areas of exceedances of the annual average limit values of 40 and 25 µg m−3 for PM10 and PM2.5 respectively were negligible.

Download
Short summary
A coupled atmospheric dispersion modelling system has been developed, comprising a regional...
Altmetrics
Final-revised paper
Preprint