Articles | Volume 17, issue 13
https://doi.org/10.5194/acp-17-8371-2017
https://doi.org/10.5194/acp-17-8371-2017
Research article
 | Highlight paper
 | 
11 Jul 2017
Research article | Highlight paper |  | 11 Jul 2017

Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements

Thibaud Thonat, Marielle Saunois, Philippe Bousquet, Isabelle Pison, Zeli Tan, Qianlai Zhuang, Patrick M. Crill, Brett F. Thornton, David Bastviken, Ed J. Dlugokencky, Nikita Zimov, Tuomas Laurila, Juha Hatakka, Ove Hermansen, and Doug E. J. Worthy

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Thibaud Thonat on behalf of the Authors (06 Jun 2017)  Author's response   Manuscript 
ED: Publish subject to technical corrections (09 Jun 2017) by Eliza Harris
AR by Thibaud Thonat on behalf of the Authors (12 Jun 2017)  Manuscript 
Download
Short summary
Atmospheric methane simulations in the Arctic have been made for 2012 and compared to continuous observations at six measurement sites. All methane sources significantly affect the measurements at all stations, at least at the synoptic scale, except for biomass burning. An appropriate modelling framework combined with continuous observations of atmospheric methane enables us to gain knowledge on regional methane sources, including those which are usually poorly represented, such as freshwater.
Altmetrics
Final-revised paper
Preprint