Articles | Volume 17, issue 12
https://doi.org/10.5194/acp-17-7965-2017
https://doi.org/10.5194/acp-17-7965-2017
Research article
 | 
30 Jun 2017
Research article |  | 30 Jun 2017

Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes

Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang

Abstract. Black carbon (BC) has important impact on climate and environment due to its light absorption ability, which greatly depends on its physicochemical properties including morphology, size and mixing state. The size distribution of the refractory BC (rBC) was investigated in urban Beijing in the late winter of 2014, during which there were frequent haze events, through analysis of measurements obtained using a single-particle soot photometer (SP2). By assuming void-free rBC with a density of 1.8 g cm−3, the mass of the rBC showed an approximately lognormal distribution as a function of the volume-equivalent diameter (VED), with a peak diameter of 213 nm. Larger VED values of the rBC were observed during polluted periods than on clean days, implying an alteration in the rBC sources, as the size distribution of the rBC from a certain source was relative stable, and VED of an individual rBC varied little once it was emitted into the atmosphere. The potential source contribution function analysis showed that air masses from the south to east of the observation site brought higher rBC loadings with more thick coatings and larger core sizes. The mean VED of the rBC presented a significant linear correlation with the number fraction of thickly coated rBC, extrapolating to be  ∼ 150 nm for the completely non-coated or thinly coated rBC. It was considered as the typical mean VED of the rBC from local traffic sources in this study. Local traffic was estimated to contribute 35 to 100 % of the hourly rBC mass concentration with a mean of 59 % during the campaign. Lower local traffic contributions were observed during polluted periods, suggesting increasing contributions from other sources (e.g., coal combustion and biomass burning) to the rBC. Thus, the heavy pollution in Beijing was greatly influenced by other sources in addition to the local traffic.

Download
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Altmetrics
Final-revised paper
Preprint