Articles | Volume 17, issue 4
Research article
 | Highlight paper
22 Feb 2017
Research article | Highlight paper |  | 22 Feb 2017

Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015

Gunnar Myhre, Wenche Aas, Ribu Cherian, William Collins, Greg Faluvegi, Mark Flanner, Piers Forster, Øivind Hodnebrog, Zbigniew Klimont, Marianne T. Lund, Johannes Mülmenstädt, Cathrine Lund Myhre, Dirk Olivié, Michael Prather, Johannes Quaas, Bjørn H. Samset, Jordan L. Schnell, Michael Schulz, Drew Shindell, Ragnhild B. Skeie, Toshihiko Takemura, and Svetlana Tsyro


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Gunnar Myhre on behalf of the Authors (25 Nov 2016)  Manuscript 
ED: Referee Nomination & Report Request started (02 Dec 2016) by Jason West
ED: Reconsider after minor revisions (Editor review) (19 Dec 2016) by Jason West
AR by Gunnar Myhre on behalf of the Authors (12 Jan 2017)  Author's response   Manuscript 
ED: Publish as is (07 Feb 2017) by Jason West
AR by Gunnar Myhre on behalf of the Authors (08 Feb 2017)
Short summary
Over the past decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990–2015, as simulated by seven global atmospheric composition models. The global mean radiative forcing is more strongly positive than reported in IPCC AR5.
Final-revised paper