Articles | Volume 17, issue 2
https://doi.org/10.5194/acp-17-1081-2017
https://doi.org/10.5194/acp-17-1081-2017
Research article
 | 
24 Jan 2017
Research article |  | 24 Jan 2017

Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts

Rachid Abida, Jean-Luc Attié, Laaziz El Amraoui, Philippe Ricaud, William Lahoz, Henk Eskes, Arjo Segers, Lyana Curier, Johan de Haan, Jukka Kujanpää, Albert Oude Nijhuis, Johanna Tamminen, Renske Timmermans, and Pepijn Veefkind

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jean-Luc Attié on behalf of the Authors (13 Oct 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (21 Oct 2016) by Quentin Errera
RR by Anonymous Referee #1 (10 Nov 2016)
RR by Anonymous Referee #3 (17 Nov 2016)
ED: Publish subject to technical corrections (25 Nov 2016) by Quentin Errera
AR by Jean-Luc Attié on behalf of the Authors (19 Dec 2016)  Author's response   Manuscript 
Download
Short summary
A detailed Observing System Simulation Experiment is performed to quantify the impact of future satellite instrument S-5P carbon monoxide (CO) on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode. S-5P is able to capture the CO from forest fires that occurred in Portugal. Furthermore, our results provide evidence of S-5P CO benefits for monitoring processes contributing to atmospheric pollution.
Altmetrics
Final-revised paper
Preprint