Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 14
Atmos. Chem. Phys., 16, 9129–9147, 2016
https://doi.org/10.5194/acp-16-9129-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 9129–9147, 2016
https://doi.org/10.5194/acp-16-9129-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Jul 2016

Research article | 25 Jul 2016

Upper-tropospheric CO and O3 budget during the Asian summer monsoon

Brice Barret, Bastien Sauvage, Yasmine Bennouna, and Eric Le Flochmoen Brice Barret et al.
  • Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract. During the Asian summer monsoon, the circulation in the upper troposphere/lower stratosphere (UTLS) is dominated by the Asian monsoon anticyclone (AMA). Pollutants convectively uplifted to the upper troposphere are trapped within this anticyclonic circulation that extends from the Pacific Ocean to the Eastern Mediterranean basin. Among the uplifted pollutants are ozone (O3) and its precursors, such as carbon monoxide (CO) and nitrogen oxides (NOx). Many studies based on global modeling and satellite data have documented the source regions and transport pathways of primary pollutants (CO, HCN) into the AMA. Here, we aim to quantify the O3 budget by taking into consideration anthropogenic and natural sources. We first use CO and O3 data from the MetOp-A/IASI sensor to document their tropospheric distributions over Asia, taking advantage of the useful information they provide on the vertical dimension. These satellite data are used together with MOZAIC tropospheric profiles recorded in India to validate the distributions simulated by the global GEOS-Chem chemistry transport model. Over the Asian region, UTLS monthly CO and O3 distributions from IASI and GEOS-Chem display the same large-scale features. UTLS CO columns from GEOS-Chem are in agreement with IASI, with a low bias of 11 ± 9 % and a correlation coefficient of 0.70. For O3, the model underestimates IASI UTLS columns over Asia by 14 ± 26 % but the correlation between both is high (0.94). GEOS-Chem is further used to quantify the CO and O3 budget through sensitivity simulations. For CO, these simulations confirm that South Asian anthropogenic emissions have a more important impact on enhanced concentrations within the AMA (∼  25 ppbv) than East Asian emissions (∼  10 ppbv). The correlation between enhanced emissions over the Indo-Gangetic Plain and monsoon deep convection is responsible for this larger impact. Consistently, South Asian anthropogenic NOx emissions also play a larger role in producing O3 within the AMA (∼  8 ppbv) than East Asian emissions (∼  5 ppbv), but Asian lightning-produced NOx is responsible for the largest O3 production (10–14 ppbv). Stratosphere-to-troposphere exchanges are also important in transporting O3 in the upper part of the AMA.

Publications Copernicus
Download
Short summary
During the Asian Monsoon, pollutants are uplifted to the upper troposphere where they are trapped within the large scale Asian monsoon anticyclone. Among these pollutants are O3 precursors such as nitrogen oxides (NOx) and carbon monoxide (CO). Based on satellite observations and model simulations, we have estimated the impact of anthropogenic and natural sources on O3 in the monsoon anticyclone. Our results show that Asian pollution and LiNOx have comparable contributions.
During the Asian Monsoon, pollutants are uplifted to the upper troposphere where they are...
Citation
Final-revised paper
Preprint