Articles | Volume 16, issue 12
https://doi.org/10.5194/acp-16-7889-2016
https://doi.org/10.5194/acp-16-7889-2016
Research article
 | 
29 Jun 2016
Research article |  | 29 Jun 2016

A DNS study of aerosol and small-scale cloud turbulence interaction

Natalia Babkovskaia, Ullar Rannik, Vaughan Phillips, Holger Siebert, Birgit Wehner, and Michael Boy

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Natalia Babkovskaia on behalf of the Authors (20 May 2016)  Manuscript 
ED: Publish as is (01 Jun 2016) by Steffen M. Noe
AR by Natalia Babkovskaia on behalf of the Authors (09 Jun 2016)
Download
Short summary
Turbulence, aerosol growth and microphysics of hydrometeors in clouds are intimately coupled. A new modelling approach was applied to quantify this linkage. We study the interaction in the cloud area under transient, high supersaturation conditions, using direct numerical simulations. Analysing the effect of aerosol dynamics on the turbulent kinetic energy and on vertical velocity, we conclude that the presence of aerosol has an effect on vertical motion and tends to reduce downward velocity.
Altmetrics
Final-revised paper
Preprint