Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-573-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-573-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reactive nitrogen partitioning and its relationship to winter ozone events in Utah
R. J. Wild
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
P. M. Edwards
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
now at: Department of Chemistry, University of York, York, YO10 5DD, UK
T. S. Bates
Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, USA
Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington 98195, USA
R. C. Cohen
Department of Chemistry, University of California, Berkeley, California 94720, USA
J. A. de Gouw
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
W. P. Dubé
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
J. B. Gilman
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
J. Holloway
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
J. Kercher
Department of Chemistry, Hiram College, Hiram, Ohio 44234, USA
A. R. Koss
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
L. Lee
Department of Chemistry, University of California, Berkeley, California 94720, USA
B. M. Lerner
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
R. McLaren
Centre for Atmospheric Chemistry and Chemistry Department, York University, Toronto, Ontario, M3J 1P3, Canada
P. K. Quinn
Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, USA
J. M. Roberts
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095, USA
J. A. Thornton
Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, USA
P. R. Veres
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
C. Warneke
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
E. Williams
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
C. J. Young
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
now at: Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
K. J. Zarzana
Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 USA
Viewed
Total article views: 4,244 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Aug 2015)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 2,513 | 1,552 | 179 | 4,244 | 118 | 150 |
- HTML: 2,513
- PDF: 1,552
- XML: 179
- Total: 4,244
- BibTeX: 118
- EndNote: 150
Total article views: 3,418 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Jan 2016)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 2,170 | 1,093 | 155 | 3,418 | 100 | 127 |
- HTML: 2,170
- PDF: 1,093
- XML: 155
- Total: 3,418
- BibTeX: 100
- EndNote: 127
Total article views: 826 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Aug 2015)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 343 | 459 | 24 | 826 | 18 | 23 |
- HTML: 343
- PDF: 459
- XML: 24
- Total: 826
- BibTeX: 18
- EndNote: 23
Latest update: 19 Nov 2025
Short summary
High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation, and we find that nighttime chemistry has a large effect on its partitioning. Much of the oxidation of reactive nitrogen during a high-ozone year occurred via heterogeneous uptake onto aerosol at night, keeping NOx at concentrations comparable to a low-ozone year.
High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated...
Altmetrics
Final-revised paper
Preprint