Articles | Volume 16, issue 8
https://doi.org/10.5194/acp-16-5343-2016
https://doi.org/10.5194/acp-16-5343-2016
Research article
 | 
28 Apr 2016
Research article |  | 28 Apr 2016

Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

Aurélie Bachy, Marc Aubinet, Niels Schoon, Crist Amelynck, Bernard Bodson, Christine Moureaux, and Bernard Heinesch

Abstract. Although maize is the second most important crop worldwide, and the most important C4 crop, no study on biogenic volatile organic compounds (BVOCs) has yet been conducted on this crop at ecosystem scale and over a whole growing season. This has led to large uncertainties in cropland BVOC emission estimations. This paper seeks to fill this gap by presenting, for the first time, BVOC fluxes measured in a maize field at ecosystem scale (using the disjunct eddy covariance by mass scanning technique) over a whole growing season in Belgium. The maize field emitted mainly methanol, although exchanges were bi-directional. The second most exchanged compound was acetic acid, which was taken up mainly in the growing season. Bi-directional exchanges of acetaldehyde, acetone and other oxygenated VOCs also occurred, whereas the terpenes, benzene and toluene exchanges were small, albeit significant. Surprisingly, BVOC exchanges were of the same order of magnitude on bare soil and on well developed vegetation, suggesting that soil is a major BVOC reservoir in agricultural ecosystems. Quantitatively, the maize BVOC emissions observed were lower than those reported in other maize, crops and grasses studies. The standard emission factors (SEFs) estimated in this study (231 ± 19 µg m−2 h−1 for methanol, 8 ± 5 µg m−2 h−1 for isoprene and 4 ± 6 µg m−2 h−1 for monoterpenes) were also much lower than those currently used by models for C4 crops, particularly for terpenes. These results suggest that maize fields are small BVOC exchangers in north-western Europe, with a lower BVOC emission impact than that modelled for growing C4 crops in this part of the world. They also reveal the high variability in BVOC exchanges across world regions for maize and suggest that SEFs should be estimated for each region separately.

Download
Short summary
This research focuses on Biogenic Volatile Organic Compounds (BVOC) exchanges between a maize field and the atmosphere. Indeed, few BVOC studies have already investigated agricultural ecosystems. We found that the maize field emitted mainly methanol, that both soil and plants contributed to the net exchange, that exchanges were lower than in other studies and than considered by models. Our work tends thus to lower the impact of maize on terrestrial BVOC exchanges.
Altmetrics
Final-revised paper
Preprint