Articles | Volume 16, issue 7
https://doi.org/10.5194/acp-16-4369-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-4369-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Daniel J. Jacob
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
Jenny A. Fisher
Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, Australia
Patrick S. Kim
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
Eloise A. Marais
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Christopher C. Miller
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Katherine R. Travis
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Robert M. Yantosca
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Melissa P. Sulprizio
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Ron C. Cohen
Department of Chemistry, University of California, Berkeley, CA, USA
Jack E. Dibb
Earth System Research Center, University of New Hampshire, Durham, NH, USA
Alan Fried
Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
Tomas Mikoviny
Department of Chemistry, University of Oslo, Oslo, Norway
Thomas B. Ryerson
Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Paul O. Wennberg
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, USA
Armin Wisthaler
Department of Chemistry, University of Oslo, Oslo, Norway
Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
Data sets
Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) SEAC4RS Science Team https://doi.org/10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud
Short summary
Increasing the spatial resolution of a chemical transport model may improve simulations but can be computationally expensive. Using observations from the SEAC4RS aircraft campaign, we find that at higher spatial resolutions, models are better able to simulate the chemical pathways of ozone precursors, but the overall effect on regional mean concentrations is small. This implies that for continental boundary layer applications, coarse resolution models are adequate.
Increasing the spatial resolution of a chemical transport model may improve simulations but can...
Altmetrics
Final-revised paper
Preprint