Articles | Volume 16, issue 23
https://doi.org/10.5194/acp-16-14891-2016
https://doi.org/10.5194/acp-16-14891-2016
Research article
 | 
01 Dec 2016
Research article |  | 01 Dec 2016

Using δ13C-CH4 and δD-CH4 to constrain Arctic methane emissions

Nicola J. Warwick, Michelle L. Cain, Rebecca Fisher, James L. France, David Lowry, Sylvia E. Michel, Euan G. Nisbet, Bruce H. Vaughn, James W. C. White, and John A. Pyle

Viewed

Total article views: 4,676 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,878 1,667 131 4,676 543 94 124
  • HTML: 2,878
  • PDF: 1,667
  • XML: 131
  • Total: 4,676
  • Supplement: 543
  • BibTeX: 94
  • EndNote: 124
Views and downloads (calculated since 28 Jun 2016)
Cumulative views and downloads (calculated since 28 Jun 2016)

Cited

Discussed (final revised paper)

Latest update: 21 Jan 2025
Download
Short summary
Methane is an important greenhouse gas. Methane emissions from Arctic wetlands are poorly quantified and may increase in a warming climate. Using a global atmospheric model and atmospheric observations of methane and its isotopologues, we find that isotopologue data are useful in constraining Arctic wetland emissions. Our results suggest that the seasonal cycle of these emissions may be incorrectly simulated in land process models, with implications for our understanding of future emissions.
Altmetrics
Final-revised paper
Preprint