Articles | Volume 16, issue 23
https://doi.org/10.5194/acp-16-14825-2016
https://doi.org/10.5194/acp-16-14825-2016
Research article
 | 
29 Nov 2016
Research article |  | 29 Nov 2016

Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean

Christos Kaltsonoudis, Evangelia Kostenidou, Kalliopi Florou, Magda Psichoudaki, and Spyros N. Pandis

Abstract. During the summer of 2012 volatile organic compounds (VOCs) were monitored by proton transfer reaction mass spectrometry (PTR-MS) in urban sites, in Athens and Patras, two of the largest cities in Greece. Also, during the winter of 2013, PTR-MS measurements were conducted in the center of the city of Athens. Positive matrix factorization (PMF) was applied to the VOC measurements to gain insights about their sources.

In summer most of the measured VOCs were due to biogenic and traffic emissions. Isoprene, monoterpenes, and several oxygenated VOCs (oVOCs) originated mainly from vegetation either directly or as oxidation products. Isoprene average concentrations in Patras and Athens were 1 and 0.7 ppb respectively, while the monoterpene concentrations were 0.3 and 0.9 ppb respectively. Traffic was the main source of aromatic compounds during summer. For Patras and Athens the average concentrations of benzene were 0.1 and 0.2 ppb, of toluene 0.3 and 0.8 ppb, and of the xylenes 0.3 and 0.7 ppb respectively.

Winter measurements in Athens revealed that biomass burning used for residential heating was a major VOC source contributing both aromatic VOCs and biogenic compounds such as monoterpenes. Several episodes related to biomass burning were identified and emission ratios (ERs) and emission factors (EFs) were estimated.

Download
Short summary
Volatile organic compounds (VOCs) were monitored in urban backgrounds sites, in Athens and Patras in Greece. In summer most of the measured VOCs were due to biogenic and traffic emissions. Winter measurements in Athens revealed that biomass burning used for residential heating was the dominant VOC source. The biomass burning VOC emission ratios and emission factors were estimated.
Altmetrics
Final-revised paper
Preprint