Articles | Volume 16, issue 21
https://doi.org/10.5194/acp-16-13491-2016
https://doi.org/10.5194/acp-16-13491-2016
Research article
 | 
01 Nov 2016
Research article |  | 01 Nov 2016

Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

Sujeeta Singh, Marc N. Fiddler, and Solomon Bililign

Abstract. Biomass burning (BB) aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA) and Ångstrom absorption exponent (AAE) were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15–0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59–5.57), despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.

Download
Short summary
An accurate measurement of optical properties of aerosols is critical for quantifying the effect of aerosols on climate. Uncertainties still persist and measurement results vary significantly. The factors that affect measurement accuracy and the resulting uncertainties of the extinction-minus-scattering method are evaluated using a combination of cavity ring-down spectroscopy (CRDS) and integrating nephelometry, and applied to measure the optical properties of fresh soot (size 300 and 400 nm).
Altmetrics
Final-revised paper
Preprint