Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 3
Atmos. Chem. Phys., 16, 1317–1330, 2016
https://doi.org/10.5194/acp-16-1317-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 1317–1330, 2016
https://doi.org/10.5194/acp-16-1317-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Feb 2016

Research article | 05 Feb 2016

Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

H. C. Cheung1, C. C.-K. Chou1, M.-J. Chen1, W.-R. Huang1, S.-H. Huang1, C.-Y. Tsai1, and C. S. L. Lee2 H. C. Cheung et al.
  • 1Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
  • 2Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan

Abstract. The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm) and submicron particles (PM1, d ≤ 1 µm) in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory), an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC) and the particle number size distribution (PSD) with size range of 4–736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m−3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m−3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9  ×  103 cm−3 in autumn to 19.4  ×  103 cm−3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 − 25) peaked at 11.6  ×  103 cm−3 in winter, whereas the Aitken-mode (N25 − 100) and accumulation-mode (N100 − 736) PNC exhibited summer maxima at 6.0  ×  103 and 3.1  ×  103 cm−3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season, which was characterized by average particle growth and formation rates of 4.0 ± 1.1 nm h−1 and 1.4 ± 0.8 cm−3 s−1, respectively. The prevalence of new particle formation (NPF) in summer was suggested as a result of seasonally enhanced photochemical oxidation of SO2 that contributed to the production of H2SO4, and a low level of PM10 (d ≤ 10 µm) that served as the condensation sink. Regarding the sources of aerosol particles, correlation analysis of the PNCs against NOx revealed that the local vehicular exhaust was the dominant contributor of the UFPs throughout the year. Conversely, the Asian pollution outbreaks had significant influence in the PNC of accumulation-mode particles during the seasons of winter monsoons. The results of this study implied the significance of secondary organic aerosols in the seasonal variations of UFPs and the influences of continental pollution outbreaks in the downwind areas of Asian outflows.

Publications Copernicus
Download
Short summary
This study investigated the properties of ultra-fine particles (UFPs) and submicron particles (PM1) in an east Asian urban area. The results indicate that the concentration of PM1 was elevated during cold seasons, whereas the highest concentration of UFPs was measured in summer. Moreover, UFPs were mostly composed of organics, whereas ammonium and sulfate were the major constituents of PM1. This study underlines the significance of secondary organic aerosols in UFPs.
This study investigated the properties of ultra-fine particles (UFPs) and submicron particles...
Citation
Final-revised paper
Preprint