Articles | Volume 16, issue 16
https://doi.org/10.5194/acp-16-10351-2016
https://doi.org/10.5194/acp-16-10351-2016
Research article
 | 
16 Aug 2016
Research article |  | 16 Aug 2016

An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

Enrico Dammers, Mathias Palm, Martin Van Damme, Corinne Vigouroux, Dan Smale, Stephanie Conway, Geoffrey C. Toon, Nicholas Jones, Eric Nussbaumer, Thorsten Warneke, Christof Petri, Lieven Clarisse, Cathy Clerbaux, Christian Hermans, Erik Lutsch, Kim Strong, James W. Hannigan, Hideaki Nakajima, Isamu Morino, Beatriz Herrera, Wolfgang Stremme, Michel Grutter, Martijn Schaap, Roy J. Wichink Kruit, Justus Notholt, Pierre-F. Coheur, and Jan Willem Erisman

Viewed

Total article views: 4,757 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,779 1,662 316 4,757 107 93
  • HTML: 2,779
  • PDF: 1,662
  • XML: 316
  • Total: 4,757
  • BibTeX: 107
  • EndNote: 93
Views and downloads (calculated since 15 Mar 2016)
Cumulative views and downloads (calculated since 15 Mar 2016)

Cited

Saved (preprint)

Discussed (final revised paper)

Latest update: 20 Nov 2024
Download
Short summary
Atmospheric ammonia (NH3) measured by the IASI satellite instrument is compared to observations from ground-based FTIR instruments. The seasonal cycles of NH3 in both datasets are consistent for most sites. Correlations are found to be high at sites with considerable NH3 levels, whereas correlations are lower at sites with low NH3 levels close to the detection limit of the IASI instrument. The study's results further indicate that the IASI-NH3 product performs better than earlier estimates.
Altmetrics
Final-revised paper
Preprint