Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 15
Atmos. Chem. Phys., 16, 10097–10109, 2016
https://doi.org/10.5194/acp-16-10097-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 10097–10109, 2016
https://doi.org/10.5194/acp-16-10097-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Aug 2016

Research article | 11 Aug 2016

The possible contribution of the periodic emissions from farmers' activities in the North China Plain to atmospheric water-soluble ions in Beijing

Pengfei Liu1,2, Chenglong Zhang1,2, Yujing Mu1,2,3, Chengtang Liu1,2, Chaoyang Xue1,2, Can Ye1,2, Junfeng Liu1,2, Yuanyuan Zhang1,2, and Hongxing Zhang1,4 Pengfei Liu et al.
  • 1Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
  • 2University of Chinese Academy of Sciences, Beijing, 100049, China
  • 3Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
  • 4Beijing Urban Ecosystem Research Station, Beijing, 100085, China

Abstract. The North China Plain (NCP), which includes Beijing, is currently suffering from severe haze events due to a high pollution level of PM2.5. To mitigate the serious pollution problem, identification of the sources of PM2.5 is urgently needed for the effective control measures. Daily samples of PM2.5 were collected in Beijing city and in a rural area in Baoding, Hebei Province through the year of 2014, and the seasonal variation of water-soluble ions (WSIs) in PM2.5 was comprehensively analysed to determine their possible sources. The results indicated that the periodic emissions from farmers' activities made a significant contribution to the atmospheric WSIs in Beijing. The relatively high concentration of K+ in winter and autumn at the two sampling sites confirmed that crop straw burning contributed to atmospheric K+ in Beijing. The remarkable elevation of Cl at the two sampling sites as well as the evident increase of the Cl ∕ K+ ratio and the Cl proportion in WSIs during the winter in Beijing could be ascribed to coal combustion for heating by farmers. The unusually high ratio of Cl to Na+ in summer, the obviously high concentrations of Cl in the rural sampling site and the elevation of Cl proportion in WSIs in Beijing during the maize fertilization could be explained by the use of the prevailing fertilizer of NH4Cl in the vast area of NCP. The abnormally high concentrations of Ca2+ at the two sampling sites and the elevation of Ca2+ proportion during the period of the maize harvest and soil ploughing in Beijing provided convincing evidence that the intensive agricultural activities in autumn contributed to the regional mineral dust. The most serious pollution episodes in autumn were coincident with significant elevation of Ca2+, indicating that the mineral dust emission from the harvest and soil ploughing not only increased the atmospheric concentrations of the primary pollutants, but also greatly accelerated formation of sulfate and nitrate through heterogeneous reactions of NO2 and SO2 on the mineral dust. The backward trajectories also indicated that the highest concentrations of WSIs usually occurred in the air parcel from southwest–south regions, which have a high density of farmers. In addition, the values of nitrogen oxidation ratio (NOR) and the sulfur oxidation ratio (SOR) were found to be much greater under haze days than under non-haze days, implying that formation of sulfate and nitrate was greatly accelerated through heterogeneous or multiphase reactions of NO2 and SO2 on PM2.5.

Publications Copernicus
Download
Short summary
The periodic emissions from farmers' activities in the NCP were found to make a great contribution to atmospheric WSIs in Beijing: crop straw burning contributed to K+ in Beijing; coal combustion for heating by farmers in winter and the use of NH4Cl fertilizers in the NCP contributed to Cl in Beijing. The harvest and soil ploughing in autumn contributed to the regional Ca2+. In addition, the mineral dust greatly accelerated formation of sulfate and nitrate through heterogeneous reactions.
The periodic emissions from farmers' activities in the NCP were found to make a great...
Citation
Final-revised paper
Preprint