Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 17
Atmos. Chem. Phys., 15, 9747–9763, 2015
https://doi.org/10.5194/acp-15-9747-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 9747–9763, 2015
https://doi.org/10.5194/acp-15-9747-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Sep 2015

Research article | 01 Sep 2015

Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

A. Babenhauserheide et al.

Viewed

Total article views: 3,333 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,309 872 152 3,333 191 102 97
  • HTML: 2,309
  • PDF: 872
  • XML: 152
  • Total: 3,333
  • Supplement: 191
  • BibTeX: 102
  • EndNote: 97
Views and downloads (calculated since 25 Mar 2015)
Cumulative views and downloads (calculated since 25 Mar 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 05 Aug 2020
Publications Copernicus
Download
Short summary
We compare two different data assimilation systems for estimating sources and sinks of CO_2 from concentration measurements. The systems are CarbonTracker and TM5-4DVar, which have both been used in a number of scientific studies. We analyze the differences between both models as well as the sensitivity of the estimated sources and sinks to the observation coverage. The results provide a lower limit for the uncertainty of surface carbon fluxes with the current measurement network.
We compare two different data assimilation systems for estimating sources and sinks of CO_2 from...
Citation
Final-revised paper
Preprint