Articles | Volume 15, issue 16
Atmos. Chem. Phys., 15, 9501–9520, 2015
https://doi.org/10.5194/acp-15-9501-2015
Atmos. Chem. Phys., 15, 9501–9520, 2015
https://doi.org/10.5194/acp-15-9501-2015

Research article 26 Aug 2015

Research article | 26 Aug 2015

Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP)

H. Pawar et al.

Related authors

Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: discovery of a missing dimethyl sulfide source to the atmospheric environment
Lejish Vettikkat, Vinayak Sinha, Savita Datta, Ashish Kumar, Haseeb Hakkim, Priya Yadav, and Baerbel Sinha
Atmos. Chem. Phys., 20, 375–389, https://doi.org/10.5194/acp-20-375-2020,https://doi.org/10.5194/acp-20-375-2020, 2020
Short summary
Source apportionment of volatile organic compounds in the northwest Indo-Gangetic Plain using a positive matrix factorization model
Pallavi, Baerbel Sinha, and Vinayak Sinha
Atmos. Chem. Phys., 19, 15467–15482, https://doi.org/10.5194/acp-19-15467-2019,https://doi.org/10.5194/acp-19-15467-2019, 2019
Short summary
Source apportionment of NMVOCs in the Kathmandu Valley during the SusKat-ABC international field campaign using positive matrix factorization
Chinmoy Sarkar, Vinayak Sinha, Baerbel Sinha, Arnico K. Panday, Maheswar Rupakheti, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8129–8156, https://doi.org/10.5194/acp-17-8129-2017,https://doi.org/10.5194/acp-17-8129-2017, 2017
Short summary
Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley
Chinmoy Sarkar, Vinayak Sinha, Vinod Kumar, Maheswar Rupakheti, Arnico Panday, Khadak S. Mahata, Dipesh Rupakheti, Bhogendra Kathayat, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 3979–4003, https://doi.org/10.5194/acp-16-3979-2016,https://doi.org/10.5194/acp-16-3979-2016, 2016
Short summary
Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements
B. Sinha, K. Singh Sangwan, Y. Maurya, V. Kumar, C. Sarkar, B. P. Chandra, and V. Sinha
Atmos. Chem. Phys., 15, 9555–9576, https://doi.org/10.5194/acp-15-9555-2015,https://doi.org/10.5194/acp-15-9555-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Concentrations, particle-size distributions, and dry deposition fluxes of aerosol trace elements over the Antarctic Peninsula in austral summer
Songyun Fan, Yuan Gao, Robert M. Sherrell, Shun Yu, and Kaixuan Bu
Atmos. Chem. Phys., 21, 2105–2124, https://doi.org/10.5194/acp-21-2105-2021,https://doi.org/10.5194/acp-21-2105-2021, 2021
Short summary
Characteristics, primary sources and secondary formation of water-soluble organic aerosols in downtown Beijing
Qing Yu, Jing Chen, Weihua Qin, Siming Cheng, Yuepeng Zhang, Yuewei Sun, Ke Xin, and Mushtaq Ahmad
Atmos. Chem. Phys., 21, 1775–1796, https://doi.org/10.5194/acp-21-1775-2021,https://doi.org/10.5194/acp-21-1775-2021, 2021
Short summary
Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing
Tianzeng Chen, Jun Liu, Qingxin Ma, Biwu Chu, Peng Zhang, Jinzhu Ma, Yongchun Liu, Cheng Zhong, Pengfei Liu, Yafei Wang, Yujing Mu, and Hong He
Atmos. Chem. Phys., 21, 1341–1356, https://doi.org/10.5194/acp-21-1341-2021,https://doi.org/10.5194/acp-21-1341-2021, 2021
Short summary
Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO2 emissions
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021,https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Enhancement of secondary aerosol formation by reduced anthropogenic emissions during Spring Festival 2019 and enlightenment for regional PM2.5 control in Beijing
Yuying Wang, Zhanqing Li, Qiuyan Wang, Xiaoai Jin, Peng Yan, Maureen Cribb, Yanan Li, Cheng Yuan, Hao Wu, Tong Wu, Rongmin Ren, and Zhaoxin Cai
Atmos. Chem. Phys., 21, 915–926, https://doi.org/10.5194/acp-21-915-2021,https://doi.org/10.5194/acp-21-915-2021, 2021
Short summary

Cited articles

Abdalmogith, S. S. and Harrison, R. M.: The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK, Atmos. Environ., 39, 6686–6695, https://doi.org/10.1016/j.atmosenv.2005.07.059, 2005.
Agnihotri, C. and Singh, M.: Satellite study of western disturbances, Mausam, 33, 249–254, 1982.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Badarinath, K., Kharol, S. K., Sharma, A. R., and Krishna Prasad, V.: Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic Plains using multi-satellite remote sensing datasets, J. Atmos. Sol.-Terr. Phy., 71, 1267–1276, 2009.
Bell, M. L. and Davis, D. L.: Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution, Environ. Health Persp., 109, 389–394, 2001.
Download
Short summary
We quantify the contribution of long-range transport to PM levels in the NW-IGP through back-trajectory climatology analysis. Transport from the west significantly enhanced coarse- and fine-mode PM mass loadings during all seasons. Local pollution episodes enhanced coarse-mode PM only during winter and fine-mode PM during winter and summer seasons. South-easterly air masses (source region: SE-IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons.
Altmetrics
Final-revised paper
Preprint