Articles | Volume 15, issue 10
https://doi.org/10.5194/acp-15-5501-2015
https://doi.org/10.5194/acp-15-5501-2015
Research article
 | 
20 May 2015
Research article |  | 20 May 2015

Impacts of emission reductions on aerosol radiative effects

J.-P. Pietikäinen, K. Kupiainen, Z. Klimont, R. Makkonen, H. Korhonen, R. Karinkanta, A.-P. Hyvärinen, N. Karvosenoja, A. Laaksonen, H. Lihavainen, and V.-M. Kerminen

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Joni-Pekka Pietikäinen on behalf of the Authors (09 Apr 2015)  Author's response   Manuscript 
ED: Publish as is (02 May 2015) by Dominick Spracklen
AR by Joni-Pekka Pietikäinen on behalf of the Authors (04 May 2015)
Download
Short summary
The global aerosol--climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. We show that aerosol burdens overall can have a decreasing trend leading to reductions in the direct aerosol effect being globally 0.06--0.4W/m2 by 2030, whereas the aerosol indirect radiative effect could decline 0.25--0.82W/m2. We also show that the targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally.
Altmetrics
Final-revised paper
Preprint