Castle, K. J., Kleissas, K. M., Rheinhart, J. M., Hwang, E. S., and Dodd, J. A.: Vibrational relaxation of CO
2(
v2) by atomic oxygen, J. Geophys. Res., 111, A09303, https://doi.org/10.1029/2006JA011736, 2006.
Castle, K. J., Black, L. A., Simione, M. W., and Dodd, J. A.: Vibrational relaxation of CO
2(
v2) by O(
3P) in the 142–490 K temperature range, J. Geophys. Res., 117, A04310, https://doi.org/10.1029/2012JA017519, 2012.
Crutzen, P. J.: Discussion of paper "Absorption and emission by carbon dioxide in the atmosphere" by J. T. Houghton, Q. J. Roy. Meteor. Soc., 96, 767–770, 1970.
de Lara-Castells, M. P., Hernández, M. I., Delgado-Barrio, G., Villarreal, P., and López-Puertas, M.: Vibrational quenching of CO
2(010) by collisions with O(
3P) at thermal energies: A quantum-mechanical study, J. Chem. Phys., 124, 164302, https://doi.org/10.1063/1.2189860, 2006.
de Lara-Castells, M. P., Hernández, M. I., Delgado-Barrio, G., Villarreal, P., and López-Puertas, M.: Key role of spin-orbit effects in the relaxation of CO
2(010) by thermal collisions with O(
3P), Mol. Phys., 105, 1171–1181, https://doi.org/10.1080/00268970701244809, 2007.
Dickinson, R. E.: Infrared radiative cooling in the mesosphere and lower thermosphere, J. Atmos. Sol. Terr. Phys., 46, 995–1008, 1984.
Dothe, H., Sharma, R. D., and Duff, J. W.: On the steady-state assumption for the energy distribution function of the nonthermal N(
4S) atoms and the efficiency of NO production by these atoms in the terrestrial thermosphere, Geophys. Res. Lett., 24, 3233–3236, 1997.
Duff, J. W. and Sharma, R. D.: Quasiclassical trajectory study of the N(
4S)+NO(
2∏) →
N2(
1∑
g)+O(
3P) reaction rate coefficient, Geophys. Res. Lett., 23, 2777–2780, 1996.
Duff, J. W. and Sharma, R. D.: Quasiclassical trajectory study of the N(
4S)+NO(
2∏) →
N2(
1∑
g)+O(
3P) reaction cross section on the excited
3A
′ NNO surface, Chem. Phys. Lett., 265, 404–409, 1997.
Farmer, C. B., Raper, O. F., and O'Callaghan, F. G.: Final report on the first flight of the ATMOS instrument during the Spacelab 3 mission, 29 April through 6 May 1985, JPL Pub., 87–32, Jet Propul. Lab., 1 October, 45 pp., 1987.
Feofilov, A. G.: Interactive comment on "Technical Note: A new mechanism of 15 μm emission in the mesosphere-lower thermosphere(MLT)" by R. D. Sharma, Atmos. Chem. Phys. Discuss., 14, C8069–C8075, 2014.
Feofilov, A. G., Kutepov, A. A., She, C.-Y., Smith, A. K., Pesnell, W. D., and Goldberg, R. A.: CO
2(v
2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere, Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012, 2012.
Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, https://doi.org/10.5194/acp-8-2151-2008, 2008.
Gordiets, B. F., Kulikov, Y. N., Markov, M. N., and Marov, M. Y.: Numerical Modeling of the Thermospheric Heat Budget, J. Geophys. Res., 87, 4504–4514, 1982.
Gusev, O., Kaufmann, M., Grossmann, K. U., Schmidlin, F. J., and Shepard, F. J.: Atmospheric neutral temperature distribution at the mesopause/turbopause altitude, J. Atmos. Sol. Terr. Phys., 68, 1684–1697, https://doi.org/10.1016/j.jastp.2005.12.010, 2006.
Kaufmann, M., Zhu, Y., Ern, M., and Riese, M.: Global distribution of atomic oxygen in the medopause region as derived from SCIAMACHY O(
1S) green line measurements, Geophys. Res. Lett., 41, 6274–6280, https://doi.org/10.1002/2014GL060574, 2014.
Khvorostovskaya, L. E., Potekhin, I. Y., Shved, G. M., Ogibalov, V. P., and Uzyukova, T. V.: Measurement of the rate constant for quenching CO
2(01
10) by atomic oxygen at low temperatures: reassessment of the rate of cooling by the CO
2 15 μm Emission in the Lower Thermosphere, Izv-Atmos. Ocean. Phys., 38, 613–624, 2002.
Kumer, J. B., Stair A. T., Jr., Wheeler N., Baker K. D., and Baker, D. J.: Evidence for an OH
† vv → N
2† vv → CO
2(
v3) → CO
2 + he(4.3 μm) mechanism for 4.3 μm airglow, J. Geophys. Res., 83, 4743–4747, https://doi.org/10.1029/JA083iA10p04743, 1978.
López-Puertas, M., López-Valverde, M. A., Rinsland, C. P., and Gunson, M. R.: Analysis of the Upper Atmosphere CO
2(
v2) Vibrational Temperatures Retrieved From ATMOS/Spacelab 3 Observations, J. Geophys. Res., 97, 20469–20478, 1992.
López-Puertas, M., Garcia-Comas, M., Funke, B., Picard, R. H., Winick, J. R., Wintersteiner, P. P., Mlynczak, M. G., Mertens, C. J., Russell III, J. M., and Gordley, L. L.: Evidence for an OH(
v) excitation mechanism of CO
2 4.3 μm nighttime emission from SABER/TIMED measurements, J. Geophys. Res., 109, D09307, https://doi.org/10.1029/2003JD004383, 2004.
López-Puertas, M.: Interactive comment on "Technical Note: A new mechanism of 15 μm emission in the mesosphere-lower thermosphere(MLT)" by R. D. Sharma, Atmos. Chem. Phys. Discuss., 14, C8669–C8674, 2014.
Offermann, D., Grossmann, K. U., Barthol, P., Knieling, P., Riese, M., and Trant, R.: Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment and middle atmosphere variability, J. Geophys. Res. 104, 16311–16325, https://doi.org/10.1029/1998JD100047, 1999.
Ratkowski, A. J., Picard, R. H., Winick, J. R., Grossmann, K. U., Homann, D., Ulwick, J. C., and Paboojian, A. J.: Lower-thermospheric infrared emissions from minor species during high-altitude twilight-B. Analysis if 15 μm emission and comparison with non-LTE models, J. Atmos. Terr. Phys., 56, 1899–1914, 1994.
Rinsland, C. P., Gunson, M. R., Zander, R., and López-Puertas, M.: Middle and Upper Atmosphere Pressure-Temperature Profiles and the Abundances of CO
2 and CO in the Upper Atmosphere From ATMOS/Spacelab 3 Observations, J. Geophys. Res., 97, 20479–20495, 1992.
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J. J., and Esplin, R.: Overview of the SABER experiment and preliminary calibration results, P. Soc. Photo.-Opt. Ins., 3756, 277–288, https://doi.org/10.1117/12.366382, 1999.
Sander, S. P., Friedl, R. R., Barker, J. R., Golden, D. M., Kurylo, M. J., Wine, P. M., Abbatt, J. P. D., Burkholder, J. B., Kolb, C. E., Moortgat, G. K., Huie, R. E., and Orkin, V. L.: Chemical kinetics and photochemical data for use in atmospheric modeling – Evaluation 17, JPL Publ. 06-2, Jet Propul. Lab., Calif. Inst. of Tech., Pasadena, CA, available at: http://jpldataeval.jpl.nasa.gov (last access: 15 May 2014), 2011.
Sharma, R. D.: Deactivation of Bending Mode of CO
2 by Hydrogen and Deuterium, J. Chem. Phys., 50, 919–923, 1969.
Sharma, R. D.: Vibrational Relaxation of CO
2 by H
2O, J. Chem. Phys., 54, 810–811, 1971.
Sharma, R. D.: Infrared Airglow, Progress in Atmospheric Physics, in: Proceedings of the 15th Annual Meeting on Atmospheric Studies by Optical Methods, edited by: R. Rodrigo, López-Moreno, J. J., López-Puertas, M., and Molina, A., Kluwer Academic Publishers, Boston, 177–186, 1987.
Sharma, R. D. and Brau, C. A.: Energy Transfer in Near-Resonant Molecular Collisions due to Long-Range Forces with Application to Transfer of Vibrational Energy from v
3 Mode of CO
2 to N
2, J. Chem. Phys., 50, 924–930, 1969.
Sharma, R. D. and Dao, P. D.: A potential experiment for In-situ measurement of atmospheric temperature and atomic oxygen density in the 90-150 km altitude range by a Raman LIDAR, J. Atmos. Sol.-Terr. Phy., 67, 1519–1523, 2005.
Sharma, R. D. and Dao, P. D.: A potential remote-sensing technique for thermospheric temperature with ground-based resonant atomic oxygen Raman LIDAR, J. Atmos. Sol.-Terr. Phy., 68, 921–929, 2006.
Sharma, R. D. and Kern, C. W.: Theoretical Model for the Differential Quenching Rates of Quenching of CO Fluorescence by Ortho- and Para-Hydrogen, J. Chem. Phys., 55, 1171–1188, 1971.
Sharma, R. D. and Nadile, R. M.: Carbon Dioxide (
v2) Radiance Results Using a New Non-Equilibrium Model, Proceedings of the Aerospace Sciences Meeting, AIAA, St. Louis, MO, 12–15 January, https://doi.org/10.2514/6.1981-426, 1981.
Sharma, R. D. and Roble, R. G.: Cooling Mechanisms of the Planetary Thermospheres: The Key Role of O Atom Vibrational Excitation of CO
2 and NO, Chem. Phys. Phys. Chem., 3, 841–843, 2002.
Sharma, R. D. and Sindoni, J. M.: Inelastic and Ballistic Processes Resulting from CsF-Ar Collisions, J. Chem. Phys., 98, 1018–1033, https://doi.org/10.1063/1.464327, 1993.
Shved, G. M., Khvorostovskaya, L. E., Potekhin, I. Y., Demyanikov, A. I., Kutepov, A. I., and Fomichev, V. I.: Measurement of the quenching rate constant for collisions CO
2(01
10)-O; the importance of the rate constant magnitude for the thermal regime and radiation of the lower thermosphere, Izv. Atmos. Ocean. Phys., 27, 431–437, 1991.
Stair Jr., A. T., Sharma, R. D., Nadile, R. M., Baker, D. J., and Greider, W.: Observations of Limb Radiance with Cryogenic Spectral Infrared Rocket Experiment (SPIRE), J. Geophys. Res., 90, 9763–9775, 1985.
Taine, J. and Lepoutre, F.: A photoacoustic study of the collisional deactivation of the first vibrational of CO
2 by N
2 and CO, Chem. Phys. Lett., 65, 554–558, 1979.
Taine, J., Lepoutre, F., and Louis, G.: A photoacoustic study of the collisional deactivation of CO
2 by N
2, CO and O
2 between 160 and 375 K, Chem. Phys. Lett., 58, 611–615, 1978.
Taylor, R.: Energy transfer processes in the stratosphere, Can. J. Chem., 52, 1436–1451, 1974.
Wintersteiner, P. P., Picard, R. H., Sharma, R. D., Winick, J. R., and Joseph, R. A.: Line-by-Line Radiative Excitation Model for Non-Equilibrium Atmosphere: Application to CO
2 15 μm Emission, JGR-Atmospheres (D), 97, 18083–18117, 1992.