Articles | Volume 15, issue 23
https://doi.org/10.5194/acp-15-13739-2015
https://doi.org/10.5194/acp-15-13739-2015
Research article
 | 
14 Dec 2015
Research article |  | 14 Dec 2015

Analysis of CO2 mole fraction data: first evidence of large-scale changes in CO2 uptake at high northern latitudes

J. M. Barlow, P. I. Palmer, L. M. Bruhwiler, and P. Tans

Abstract. Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmospheric transport and regional patterns of surface emission and uptake. Here we present a study of changes in the observed high northern latitude CO2 seasonal cycle. We report new estimates for changes in the phase and amplitude of the seasonal variations, indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2 mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We also perform similar analysis of the first derivative of CO2 mole fraction, ΔtCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associated with independently identifying trends in phase and peak uptake and release to be 10–25 %, with the smallest biases in phase associated with the analysis of ΔtCO2. We report our analysis from Barrow, Alaska (BRW), during 1973–2013, which is representative of the broader Arctic region. We determine an amplitude trend of 0.09 ± 0.02 ppm yr-1, which is consistent with previous work. Using ΔtCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of −0.14 ± 0.14 and −0.25 ± 0.08 days yr-1 respectively and a corresponding net uptake period of −0.11 ± 0.16 days yr-1, which are significantly different to previously reported estimates. We find that the wavelet transform method has significant skill in characterizing changes in the peak uptake and release. We find a trend of 0.65 ± 0.34 % yr-1 (p < 0.01) and 0.42 ± 0.34 % yr-1 (p < 0.05) for rates of peak uptake and release respectively. Our analysis does not provide direct evidence about the balance between uptake and release of carbon when integrated throughout the year, but the increase in the seasonal amplitude of CO2 together with an invariant net carbon uptake period provides evidence that high northern latitude ecosystems are progressively taking up more carbon during spring and early summer.

Download
Short summary
The major results from our analysis include (1) a significant revision to previously reported estimates of phase changes in the seasonal cycle atmospheric CO2, which are more closely related to changes in the terrestrial biosphere; and (2) an indirect observation that is consistent with high northern latitude ecosystems progressively taking up more CO2 during spring and early summer.
Altmetrics
Final-revised paper
Preprint