the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States
B. R. Ayres
H. M. Allen
D. C. Draper
S. S. Brown
R. J. Wild
J. L. Jimenez
D. A. Day
P. Campuzano-Jost
W. Hu
J. de Gouw
A. Koss
R. C. Cohen
K. C. Duffey
P. Romer
K. Baumann
E. Edgerton
S. Takahama
J. A. Thornton
B. H. Lee
F. D. Lopez-Hilfiker
C. Mohr
P. O. Wennberg
T. B. Nguyen
A. Teng
A. H. Goldstein
Abstract. Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.
- Article
(2622 KB) - Full-text XML
- Companion paper
-
Supplement
(1351 KB) - BibTeX
- EndNote