Articles | Volume 15, issue 18
https://doi.org/10.5194/acp-15-10701-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-15-10701-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4–H2O) and ternary (H2SO4–H2O–NH3) system
A. Kürten
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
L. Rondo
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
F. Bianchi
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
J. Duplissy
CERN (European Organization for Nuclear Research), Geneva, Switzerland
now at: Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
T. Jokinen
Department of Physics, University of Helsinki, Helsinki, Finland
H. Junninen
Department of Physics, University of Helsinki, Helsinki, Finland
N. Sarnela
Department of Physics, University of Helsinki, Helsinki, Finland
S. Schobesberger
Department of Physics, University of Helsinki, Helsinki, Finland
now at: Department of Atmospheric Sciences, University of Washington, Seattle, USA
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
M. Sipilä
Department of Physics, University of Helsinki, Helsinki, Finland
J. Almeida
CERN (European Organization for Nuclear Research), Geneva, Switzerland
A. Amorim
Laboratory for Systems, Instrumentation, and Modeling in Science and Technology for Space and the Environment (SIM), University of Lisbon and University of Beira Interior, Lisbon, Portugal
J. Dommen
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
N. M. Donahue
Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, USA
E. M. Dunne
School of Earth and Environment, University of Leeds, Leeds, UK
now at: Finnish Meteorological Institute, Kuopio, Finland
R. C. Flagan
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
A. Franchin
Department of Physics, University of Helsinki, Helsinki, Finland
J. Kirkby
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
CERN (European Organization for Nuclear Research), Geneva, Switzerland
Aerosol Physics and Environmental Physics, University of Vienna, Vienna, Austria
V. Makhmutov
Solar and Cosmic Ray Research Laboratory, Lebedev Physical Institute, Moscow, Russia
T. Petäjä
Department of Physics, University of Helsinki, Helsinki, Finland
A. P. Praplan
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
Department of Physics, University of Helsinki, Helsinki, Finland
now at: Finnish Meteorological Institute, Helsinki, Finland
F. Riccobono
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
now at: Joint Research Centre, European Commission, Ispra, Italy
G. Steiner
Department of Physics, University of Helsinki, Helsinki, Finland
Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
now at: Faculty of Physics, University of Vienna, Vienna, Austria
A. Tomé
Laboratory for Systems, Instrumentation, and Modeling in Science and Technology for Space and the Environment (SIM), University of Lisbon and University of Beira Interior, Lisbon, Portugal
G. Tsagkogeorgas
Leibniz Institute for Tropospheric Research, Leipzig, Germany
P. E. Wagner
Aerosol Physics and Environmental Physics, University of Vienna, Vienna, Austria
D. Wimmer
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
now at: Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
U. Baltensperger
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
M. Kulmala
Department of Physics, University of Helsinki, Helsinki, Finland
D. R. Worsnop
Department of Physics, University of Helsinki, Helsinki, Finland
Aerodyne Research Incorporated, Billerica, MA, USA
J. Curtius
Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
Viewed
Total article views: 5,587 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 May 2015)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 3,375 | 2,052 | 160 | 5,587 | 181 | 250 |
- HTML: 3,375
- PDF: 2,052
- XML: 160
- Total: 5,587
- BibTeX: 181
- EndNote: 250
Total article views: 4,797 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Sep 2015)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 2,983 | 1,674 | 140 | 4,797 | 161 | 230 |
- HTML: 2,983
- PDF: 1,674
- XML: 140
- Total: 4,797
- BibTeX: 161
- EndNote: 230
Total article views: 790 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 May 2015)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 392 | 378 | 20 | 790 | 20 | 20 |
- HTML: 392
- PDF: 378
- XML: 20
- Total: 790
- BibTeX: 20
- EndNote: 20
Latest update: 29 Nov 2025
Short summary
New particle formation (NPF) is an important atmospheric process. At cold temperatures in the upper troposphere the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system are thought to be important for NPF. Sulfuric acid monomer (H2SO4) and sulfuric acid dimer ((H2SO4)2) concentrations were measured between 208 and 248K for these systems and dimer evaporation rates were derived. These data will help to better understand and predict binary and ternary nucleation at low temperatures.
New particle formation (NPF) is an important atmospheric process. At cold temperatures in the...
Special issue
Altmetrics
Final-revised paper
Preprint