Articles | Volume 14, issue 13
https://doi.org/10.5194/acp-14-7019-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-7019-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Basic convective element: bubble or plume? A historical review
J.-I. Yano
GAME/CNRS, URA1357, CNRS-INSU-Météo France, Toulouse, France
Related authors
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024, https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
This article is included in the Encyclopedia of Geosciences
Jun-Ichi Yano, Vince Larson, and Vaughan T. J. Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2023-2278, https://doi.org/10.5194/egusphere-2023-2278, 2024
Short summary
Short summary
The distribution problems appear in atmospheric sciences at almost every corner for describing diverse processes. This manuscript presents a general formulation for addressing all these problem.
This article is included in the Encyclopedia of Geosciences
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021, https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
This article is included in the Encyclopedia of Geosciences
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
This article is included in the Encyclopedia of Geosciences
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
J.-I. Yano, M. Bister, Ž. Fuchs, L. Gerard, V. T. J. Phillips, S. Barkidija, and J.-M. Piriou
Atmos. Chem. Phys., 13, 4111–4131, https://doi.org/10.5194/acp-13-4111-2013, https://doi.org/10.5194/acp-13-4111-2013, 2013
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024, https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Short summary
A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on the Liouville equation, as proposed earlier, is extended to multidimensional cases and to cases in which the systems are constrained by integrals over a part of the variable range. The extended methodology is tested against a convective energy-cycle system as well as the Lorenz strange attractor.
This article is included in the Encyclopedia of Geosciences
Jun-Ichi Yano, Vince Larson, and Vaughan T. J. Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2023-2278, https://doi.org/10.5194/egusphere-2023-2278, 2024
Short summary
Short summary
The distribution problems appear in atmospheric sciences at almost every corner for describing diverse processes. This manuscript presents a general formulation for addressing all these problem.
This article is included in the Encyclopedia of Geosciences
Vaughan T. J. Phillips, Jun-Ichi Yano, Akash Deshmukh, and Deepak Waman
Atmos. Chem. Phys., 21, 11941–11953, https://doi.org/10.5194/acp-21-11941-2021, https://doi.org/10.5194/acp-21-11941-2021, 2021
Short summary
Short summary
For decades, high concentrations of ice observed in precipitating mixed-phase clouds have created an enigma. Such concentrations are higher than can be explained by the action of aerosols or by the spontaneous freezing of most cloud droplets. The controversy has partly persisted due to the lack of laboratory experimentation in ice microphysics, especially regarding fragmentation of ice, a topic reviewed by a recent paper. Our comment attempts to clarify some issues with regards to that review.
This article is included in the Encyclopedia of Geosciences
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
This article is included in the Encyclopedia of Geosciences
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
J.-I. Yano, M. Bister, Ž. Fuchs, L. Gerard, V. T. J. Phillips, S. Barkidija, and J.-M. Piriou
Atmos. Chem. Phys., 13, 4111–4131, https://doi.org/10.5194/acp-13-4111-2013, https://doi.org/10.5194/acp-13-4111-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ambient and intrinsic dependencies of evolving ice-phase particles within a decaying winter storm during IMPACTS
High-resolution modeling of early contrail evolution from hydrogen-powered aircraft
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Failed cyclogenesis of a mesoscale convective system near Cabo Verde: the role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Assessing glaciogenic seeding impacts in Australia's Snowy Mountains: an ensemble modeling approach
How the representation of microphysical processes affects tropical condensate in the global storm-resolving model ICON
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud droplet number concentration
Numerical case study of the aerosol–cloud interactions in warm boundary layer clouds over the eastern North Atlantic with an interactive chemistry module
Influence of temperature and humidity on contrail formation regions in the general circulation model EMAC: a spring case study
On the impact of thunder on cloud ice crystals and droplets
Counteracting influences of gravitational settling modulate aerosol impacts on cloud-base-lowering fog characteristics
The critical number and size of precipitation embryos to accelerate warm rain initiation
Impact on the stratocumulus-to-cumulus transition of the interaction of cloud microphysics and macrophysics with large-scale circulation
Technical note: Phase space depiction of cloud condensation nuclei activation and cloud droplet diffusional growth
Impact of wildfire smoke on Arctic cirrus formation – Part 2: Simulation of MOSAiC 2019–2020 cases
Constraining aerosol–cloud adjustments by uniting surface observations with a perturbed parameter ensemble
This article is included in the Encyclopedia of Geosciences
Investigating ice formation pathways using a novel two-moment multi-class cloud microphysics scheme
Exploiting airborne far-infrared measurements to optimise an ice cloud retrieval
Microphysics regimes due to haze–cloud interactions: cloud oscillation and cloud collapse
Microphysical fingerprints in anvil cloud albedo
Influence of Secondary Ice Production on cloud and rain properties: Analysis of the HYMEX IOP7a Heavy Precipitation Event
Factors Causing Stratocumulus to Deviate from Subtropical High Variability on Seasonal to Interannual Timescales
The influence of Amazonian anthropogenic emissions on new particle formation, aerosol, cloud and surface rain
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Tropical cirrus evolution in a km-scale model with improved ice microphysics
Model analysis of biases in the satellite-diagnosed aerosol effect on the cloud liquid water path
Impacts of aerosol-radiation and aerosol-cloud interactions on a short-term heavy rainfall event – A case study in the Guanzhong Basin, China
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Ice formation processes key in determining WCB outflow cirrus properties
Role of a key microphysical factor in mixed-phase stratocumulus clouds and their interactions with aerosols
Investigating the impact of subgrid-scale aerosol-cloud interaction on mesoscale meteorology prediction
Different responses of cold-air outbreak clouds to aerosol and ice production depending on cloud temperature
Identifying Synoptic Controls on Boundary Layer Thermodynamic and Cloud Properties in a Regional Forecast Model
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Can pollen affect precipitation?
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
The subtleties of three-dimensional radiative effects in contrails and cirrus clouds
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
On the Processes Determining the Slope of Cloud-Water Adjustments in Non-Precipitating Stratocumulus
Analysis of raindrop size distribution from the double moment cloud microphysics scheme for monsoon over a tropical station
High sensitivity of simulated fog properties to parameterized aerosol activation in case studies from ParisFog
Adiabatic and radiative cooling are both important causes of aerosol activation in simulated fog events in Europe
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Numerical simulation of aerosol concentration effects on cloud droplet size spectrum evolutions of warm stratiform clouds in Jiangxi, China
The impact of aerosol on cloud water: a heuristic perspective
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 25, 8087–8106, https://doi.org/10.5194/acp-25-8087-2025, https://doi.org/10.5194/acp-25-8087-2025, 2025
Short summary
Short summary
Numerical modeling simulations are used to investigate ice crystal growth and decay processes within a banded region of enhanced precipitation rates during a prominent winter storm. We identify robust primary ice growth in the upper portion of the cloud but decay exceeding 70 % during fallout through a subsaturated layer. The ice fall characteristics and decay rate are sensitive to the ambient cloud properties, which has implications for radar-based measurements and precipitation accumulations.
This article is included in the Encyclopedia of Geosciences
Annemarie Lottermoser and Simon Unterstrasser
Atmos. Chem. Phys., 25, 7903–7924, https://doi.org/10.5194/acp-25-7903-2025, https://doi.org/10.5194/acp-25-7903-2025, 2025
Short summary
Short summary
Contrail cirrus significantly contributes to aviation's overall climate impact. As hydrogen combustion and fuel cell use are emerging technologies for aircraft propulsion, we simulated individual contrails from hydrogen propulsion during the first 6 min after exhaust emission, termed the vortex phase. The ice crystal loss during that stage is crucial, as the number of ice crystals has a large impact on the further evolution of contrails into contrail cirrus and their radiative forcing.
This article is included in the Encyclopedia of Geosciences
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025, https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Short summary
Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in a mixed phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows that turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds.
This article is included in the Encyclopedia of Geosciences
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
Atmos. Chem. Phys., 25, 7447–7465, https://doi.org/10.5194/acp-25-7447-2025, https://doi.org/10.5194/acp-25-7447-2025, 2025
Short summary
Short summary
Saharan air at the trade wind layer, cold pools, and dry upper troposphere has these three main factors inhibiting the cyclogenesis of the Pierre Henri mesoscale convective system. The findings were obtained through observations made during two flights of the Clouds-Atmospheric Dynamics-Dust Interactions in West Africa (CADDIWA) campaign and a convection-permitting simulation run with the Meso-NH model. They provide new insights into the complex dynamics of cyclogenesis in the Cabo Verde region and challenge the existing model of the Saharan Air Layer (SAL).
This article is included in the Encyclopedia of Geosciences
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025, https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Short summary
Multilayer clouds are common in the Arctic but remain underrepresented. We use an atmospheric model to simulate multilayer cloud cases from the Arctic expedition MOSAiC 2019/2020. We find that it is complex to accurately model these cloud layers due to the lack of correct temperature profiles. The model also struggles to capture the observed cloud phase and the relative concentration of cloud droplets and cloud ice. We constrain our model to measured aerosols to mitigate this issue.
This article is included in the Encyclopedia of Geosciences
Sisi Chen, Lulin Xue, Sarah A. Tessendorf, Thomas Chubb, Andrew Peace, Suzanne Kenyon, Johanna Speirs, Jamie Wolff, and Bill Petzke
Atmos. Chem. Phys., 25, 6703–6724, https://doi.org/10.5194/acp-25-6703-2025, https://doi.org/10.5194/acp-25-6703-2025, 2025
Short summary
Short summary
This study aims to investigate how cloud seeding affects snowfall in Australia's Snowy Mountains. By running simulations with different setups, we found that seeding impact varies greatly with weather conditions. Seeding increased snow in stable weather but sometimes reduced it in stormy weather. This helps us to better understand when seeding works best to boost water supplies.
This article is included in the Encyclopedia of Geosciences
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
Atmos. Chem. Phys., 25, 6429–6444, https://doi.org/10.5194/acp-25-6429-2025, https://doi.org/10.5194/acp-25-6429-2025, 2025
Short summary
Short summary
This study explores how uncertainties in the representation of microphysical processes affect the tropical condensate distribution in the global storm-resolving model ICON. The results point to the importance of the fall speed of hydrometeor particles and to a simple relationship: the faster a condensate falls, the less there is of it. Implications for the energy balance and precipitation properties are discussed.
This article is included in the Encyclopedia of Geosciences
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025, https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Short summary
Injecting sea salt aerosols into marine stratiform clouds can distribute the cloud water over more droplets in smaller sizes. This process is expected to make the clouds brighter, allowing them to reflect more sunlight back to space. However, it may also cause the clouds to lose water over time, reducing their ability to reflect sunlight. We use a computer model to show that the loss of cloud water occurs relatively quickly and does not completely offset the initial brightening.
This article is included in the Encyclopedia of Geosciences
Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier
Atmos. Chem. Phys., 25, 6121–6139, https://doi.org/10.5194/acp-25-6121-2025, https://doi.org/10.5194/acp-25-6121-2025, 2025
Short summary
Short summary
Shallow clouds in the trades are a major source of uncertainty in climate projections. These clouds organize into striking mesoscale patterns that are exactly what climate models lack. This study explores the origin of such patterns and investigates how variations in microscale properties control them. The importance of microscale effects is compared to that of large-scale forcing on the mesoscale organization of trade-cumulus fields.
This article is included in the Encyclopedia of Geosciences
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
Atmos. Chem. Phys., 25, 6069–6091, https://doi.org/10.5194/acp-25-6069-2025, https://doi.org/10.5194/acp-25-6069-2025, 2025
Short summary
Short summary
The study investigates how aerosol–cloud interactions affect warm boundary layer stratiform clouds over the eastern North Atlantic. High-resolution weather model simulations reveal that non-rain clouds at the edge of cloud systems are prone to evaporation, leading to an aerosol drying effect and a transition of aerosols back to the accumulation mode for future activation. The study shows that this dynamic behavior is often not adequately represented in most previous prescribed-aerosol simulations.
This article is included in the Encyclopedia of Geosciences
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
Atmos. Chem. Phys., 25, 5911–5934, https://doi.org/10.5194/acp-25-5911-2025, https://doi.org/10.5194/acp-25-5911-2025, 2025
Short summary
Short summary
Our study examines how well the global climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) predicts contrail formation by analysing temperature and humidity – two key factors for contrail development and persistence. The model underestimates temperature, leading to an overprediction of contrail formation and larger ice-supersaturated regions. Adjusting the model improves temperature accuracy but adds uncertainties. Better predictions of contrail formation areas can help optimise flight tracks to reduce aviation's climate effect.
This article is included in the Encyclopedia of Geosciences
Konstantinos Kourtidis, Stavros Stathopoulos, and Vassilis Amiridis
Atmos. Chem. Phys., 25, 5935–5946, https://doi.org/10.5194/acp-25-5935-2025, https://doi.org/10.5194/acp-25-5935-2025, 2025
Short summary
Short summary
The sound of thunder induces mechanical effects on cloud droplets and ice particles, causing changes in their size distribution. A shock wave near the lightning channel causes extensive shattering of cloud particles. At a distance, the audio wave will cause agglomeration of particles. So, thunder may influence the rain generation process and the radiative properties of clouds. As global warming may influence the occurrence rate of lightning, a climate feedback may be induced by these mechanisms.
This article is included in the Encyclopedia of Geosciences
Nathan H. Pope and Adele L. Igel
Atmos. Chem. Phys., 25, 5433–5444, https://doi.org/10.5194/acp-25-5433-2025, https://doi.org/10.5194/acp-25-5433-2025, 2025
Short summary
Short summary
We used an atmospheric model that simulates a single column to study the sensitivity of marine fog formed through the lowering of the base of a stratus cloud to meteorology and aerosols. We found that higher aerosol concentration reduces the likelihood and duration of fog but leads to denser fog. This overall trend was caused by multiple physical mechanisms depending on conditions.
This article is included in the Encyclopedia of Geosciences
Jung-Sub Lim, Yign Noh, Hyunho Lee, and Fabian Hoffmann
Atmos. Chem. Phys., 25, 5313–5329, https://doi.org/10.5194/acp-25-5313-2025, https://doi.org/10.5194/acp-25-5313-2025, 2025
Short summary
Short summary
Rain formation in warm clouds begins when small droplets collide, but this process can be slow without larger droplets. We used simulations to explore the role of bigger droplets, known as precipitation embryos, in triggering rain. We found that they speed up rain only when their size and number exceed a critical threshold. This threshold becomes larger when collisions are naturally efficient, such as in clouds with broad droplet size distributions or strong turbulence.
This article is included in the Encyclopedia of Geosciences
Je-Yun Chun, Robert Wood, Peter N. Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 25, 5251–5271, https://doi.org/10.5194/acp-25-5251-2025, https://doi.org/10.5194/acp-25-5251-2025, 2025
Short summary
Short summary
This study explores how aerosols affect clouds transitioning from stratocumulus to cumulus along trade winds under varying atmospheric conditions. We found that aerosols typically reduce precipitation and raise cloud height, but their impact changes when subsidence changes by aerosol enhancement are considered. Our findings indicate that the cooling effect of aerosols might be overestimated if these atmospheric changes are not accounted for.
This article is included in the Encyclopedia of Geosciences
Wojciech W. Grabowski and Hanna Pawlowska
Atmos. Chem. Phys., 25, 5273–5285, https://doi.org/10.5194/acp-25-5273-2025, https://doi.org/10.5194/acp-25-5273-2025, 2025
Short summary
Short summary
A simple diagram to depict cloud droplets' formation via the activation of cloud condensation nuclei (CCN) as well as their subsequent growth and evaporation is presented.
This article is included in the Encyclopedia of Geosciences
Albert Ansmann, Cristofer Jimenez, Daniel A. Knopf, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, and Ronny Engelmann
Atmos. Chem. Phys., 25, 4867–4884, https://doi.org/10.5194/acp-25-4867-2025, https://doi.org/10.5194/acp-25-4867-2025, 2025
Short summary
Short summary
In this study, we focus on the potential impact of wildfire smoke on cirrus formation. Aerosol and cirrus observations with lidar and radar during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, presented in the companion paper (Ansmann et al., 2025), are closely linked to comprehensive modeling of ice nucleation in cirrus evolution processes, presented in this article. A clear impact of wildfire smoke on cirrus formation was found.
This article is included in the Encyclopedia of Geosciences
August Mikkelsen, Daniel T. McCoy, Trude Eidhammer, Andrew Gettelman, Ci Song, Hamish Gordon, and Isabel L. McCoy
Atmos. Chem. Phys., 25, 4547–4570, https://doi.org/10.5194/acp-25-4547-2025, https://doi.org/10.5194/acp-25-4547-2025, 2025
Short summary
Short summary
Whether increased aerosol increases or decreases liquid cloud mass has been a longstanding question. Observed correlations suggest that aerosols thin liquid cloud, but we are able to show that observations were consistent with an increase in liquid cloud in response to aerosols by leveraging a model where causality could be traced.
Tim Lüttmer, Peter Spichtinger, and Axel Seifert
Atmos. Chem. Phys., 25, 4505–4529, https://doi.org/10.5194/acp-25-4505-2025, https://doi.org/10.5194/acp-25-4505-2025, 2025
Short summary
Short summary
We investigate ice formation pathways in idealized convective clouds using a novel microphysics scheme that distinguishes between five ice classes each with their own unique formation mechanism. Ice crystals from rime splintering form the lowermost layer of ice crystals around the updraft core. The majority of ice crystals in the anvil of the convective cloud stems from frozen droplets. Ice stemming from homogeneous and deposition nucleation was only relevant in the overshoot.
This article is included in the Encyclopedia of Geosciences
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Rui Song, Richard Siddans, Richard Bantges, Jonathan Murray, Stuart Fox, and Cathryn Fox
EGUsphere, https://doi.org/10.5194/egusphere-2025-647, https://doi.org/10.5194/egusphere-2025-647, 2025
Short summary
Short summary
Upwelling radiation with wavelengths between 15 and 100 microns is theorised to be highly sensitive to the properties of ice clouds, particularly the shape of the ice crystals. We exploit this sensitivity and perform the first retrieval of ice cloud properties using these wavelengths from an observation taken on an aircraft and evaluate it against measurements of the cloud’s properties.
This article is included in the Encyclopedia of Geosciences
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
Atmos. Chem. Phys., 25, 3785–3806, https://doi.org/10.5194/acp-25-3785-2025, https://doi.org/10.5194/acp-25-3785-2025, 2025
Short summary
Short summary
Large-eddy simulations of a convection cloud chamber show two new microphysics regimes, cloud oscillation and cloud collapse, due to haze–cloud interactions. Our results suggest that haze particles and their interactions with cloud droplets should be considered especially in polluted conditions. To properly simulate haze–cloud interactions, we need to resolve droplet activation and deactivation processes, instead of using Twomey-type activation parameterization.
This article is included in the Encyclopedia of Geosciences
Declan L. Finney, Alan M. Blyth, Paul R. Field, Martin I. Daily, Benjamin J. Murray, Mengyu Sun, Paul J. Connolly, Zhiqiang Cui, and Steven Böing
EGUsphere, https://doi.org/10.5194/egusphere-2025-1227, https://doi.org/10.5194/egusphere-2025-1227, 2025
Short summary
Short summary
We present observation-informed modelling from the Deep Convective Microphysics Experiment to study how environmental conditions and cloud processes affect anvil cloud albedo and radiation. Aerosols influencing cloud droplets or influencing ice formation yield varying radiative effects. We introduce fingerprint metrics to discern these effects. Using detailed observations and modelling, we offer insights into high cloud radiative effects and feedbacks.
This article is included in the Encyclopedia of Geosciences
Pierre Grzegorczyk, Wolfram Wobrock, Aymeric Dziduch, and Céline Planche
EGUsphere, https://doi.org/10.5194/egusphere-2025-819, https://doi.org/10.5194/egusphere-2025-819, 2025
Short summary
Short summary
The impact of secondary ice production (SIP) on a HYMEX intense precipitation event is investigated using 3D bin microphysics. Including SIP improves agreement with in situ aircraft observations (ice crystal number concentration and supercooled drop number fraction), generates small ice crystals and redistributes condensed water mass toward smaller particle sizes. As these crystals melt, the liquid precipitation flux decreases, reducing total precipitation by 8 % and heavy rainfall by 20 %.
This article is included in the Encyclopedia of Geosciences
Hairu Ding, Bjorn Stevens, and Hauke Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-876, https://doi.org/10.5194/egusphere-2025-876, 2025
Short summary
Short summary
This study examines the physical link between subtropical highs and stratocumulus variability. Using reanalysis data, we test two proposed pathways—one at the surface and one in the free troposphere—but find that neither is a dominant mechanism for stratocumulus variability on seasonal and interannual timescales. These results challenge the assumed influence of subtropical highs on stratocumulus and highlight the need for further research into lower tropospheric stability dynamics.
This article is included in the Encyclopedia of Geosciences
Xuemei Wang, Kenneth S. Carslaw, Daniel P. Grosvenor, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2025-132, https://doi.org/10.5194/egusphere-2025-132, 2025
Short summary
Short summary
Anthropogenic emissions can influence aerosol particle number concentrations via new particle formation. Our model simulations predict around 10 % increase of the particle and cloud droplet number concentrations when doubling the emissions in the Manaus region in the Amazonian wet season. However, the corresponding changes in cloud water and rain mass are around 4 %. Such weak response implied that this convective environment is not sensitive to the localised anthropogenic emission changes here.
This article is included in the Encyclopedia of Geosciences
Shiye Huang, Jing Yang, Jiaojiao Li, Qian Chen, Qilin Zhang, and Fengxia Guo
Atmos. Chem. Phys., 25, 1831–1850, https://doi.org/10.5194/acp-25-1831-2025, https://doi.org/10.5194/acp-25-1831-2025, 2025
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
This article is included in the Encyclopedia of Geosciences
Blaž Gasparini, Rachel Atlas, Aiko Voigt, Martina Krämer, and Peter N. Blossey
EGUsphere, https://doi.org/10.5194/egusphere-2025-203, https://doi.org/10.5194/egusphere-2025-203, 2025
Short summary
Short summary
Tropical cirrus clouds, especially their evolution, are poorly understood, contributing to uncertainty in climate projections. We address this by using novel tracers in a cloud-resolving model to track the life cycle of cirrus clouds, providing insights into cloud formation, ice crystal evolution, and radiative effects. We also improve the model's cloud microphysics with a simple, computationally efficient approach that can be applied to other models.
This article is included in the Encyclopedia of Geosciences
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025, https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
This article is included in the Encyclopedia of Geosciences
Naifang Bei, Bo Xiao, Ruonan Wang, Yuning Yang, Lang Liu, Yongming Han, and Guohui Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3558, https://doi.org/10.5194/egusphere-2024-3558, 2025
Short summary
Short summary
This study uses a cloud-resolving model to examine how aerosols influence a mesoscale convective system (MCS) in central China via aerosol-radiation (ARIs) and aerosol-cloud interactions (ACIs). Without ARIs, added aerosols don’t significantly affect precipitation due to cloud competition for moisture. ARIs can stabilize or enhance convection. High aerosol levels lead to a combined ARI and ACI effect that greatly reduces precipitation.
This article is included in the Encyclopedia of Geosciences
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025, https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat–CALIPSO, ERA5, and the CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
This article is included in the Encyclopedia of Geosciences
Claudia Christine Stephan and Bjorn Stevens
Atmos. Chem. Phys., 25, 1209–1226, https://doi.org/10.5194/acp-25-1209-2025, https://doi.org/10.5194/acp-25-1209-2025, 2025
Short summary
Short summary
Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this behavior remain unknown. We analyze global simulations that realistically represent precipitation processes. We consider Earth-like planets as well as virtual planets to realize different types of large-scale dynamics. Our finding is that power laws in Earth’s precipitation cluster statistics stem from the robust power laws in Earth’s atmospheric wind field.
This article is included in the Encyclopedia of Geosciences
Tim Lüttmer, Annette Miltenberger, and Peter Spichtinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-185, https://doi.org/10.5194/egusphere-2025-185, 2025
Short summary
Short summary
We investigate ice formation pathways in a warm conveyor belt case study. We employ a multi-phase microphysics scheme that distinguishes between ice from different nucleation processes. Ice crystals in the cirrus outflow mostly stem from in-situ formation. Hence they were formed directly from the vapor phase. Sedimentational redistribution modulates cirrus properties and leads to a disagreement between cirrus origin classifications based on thermodynamic history and nucleation processes.
This article is included in the Encyclopedia of Geosciences
Seoung Soo Lee, Chang Hoon Jung, Jinho Choi, Young Jun Yoon, Junshik Um, Youtong Zheng, Jianping Guo, Manguttathil G. Manoj, Sang-Keun Song, and Kyung-Ja Ha
Atmos. Chem. Phys., 25, 705–726, https://doi.org/10.5194/acp-25-705-2025, https://doi.org/10.5194/acp-25-705-2025, 2025
Short summary
Short summary
This study attempts to test a general factor that explains differences in the properties of different mixed-phase clouds using a modeling tool. Although this attempt is not to identify a factor that can perfectly explain and represent the properties of different mixed-phase clouds, we believe that this attempt acts as a valuable stepping stone towards a more complete, general way of using climate models to better predict climate change.
This article is included in the Encyclopedia of Geosciences
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Yue Peng, Zhaodong Liu, Deying Wang, Da Zhang, Chen Han, Yang Zhao, Junting Zhong, Wenxing Jia, Huiqiong Ning, and Huizheng Che
EGUsphere, https://doi.org/10.5194/egusphere-2024-3677, https://doi.org/10.5194/egusphere-2024-3677, 2025
Short summary
Short summary
We implement a real-time subgrid-scale aerosol-cloud interaction (ACI) mechanism in a mesoscale atmospheric chemistry system and find that subgrid-scale ACI can improve meteorological factors predictions. This study demonstrates the importance of real-time subgrid-scale ACI to weather forecast and the necessity of multiscale ACI studies.
This article is included in the Encyclopedia of Geosciences
Xinyi Huang, Paul R. Field, Benjamin J. Murray, Daniel P. Grosvenor, Floortje van den Heuvel, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4070, https://doi.org/10.5194/egusphere-2024-4070, 2025
Short summary
Short summary
Cold-air outbreak (CAO) clouds play a vital role in climate prediction. This study explores the responses of CAO clouds to aerosols and ice production under different environmental conditions. We found that CAO cloud responses vary with cloud temperature and are strongly controlled by the liquid-ice partitioning in these clouds, suggesting the importance of good representations of cloud microphysics properties to predict the behaviours of CAO clouds in a warming climate.
This article is included in the Encyclopedia of Geosciences
Jordan Eissner, David Mechem, Yi Jin, Virendra Ghate, and James Booth
EGUsphere, https://doi.org/10.5194/egusphere-2024-3438, https://doi.org/10.5194/egusphere-2024-3438, 2025
Short summary
Short summary
Low-level clouds have important radiative feedbacks and can occur in a range of meteorological conditions, yet our knowledge and prediction of them are insufficient. We evaluate model forecasts of low-level cloud properties across a cold front and the associated environments that they form in. The model represents the meteorological conditions well and produces broken clouds behind the cold front in areas of strong surface forcing, large stability, and large-scale subsiding motion.
This article is included in the Encyclopedia of Geosciences
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025, https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Short summary
ERA5 atmospheric reanalysis and airborne in situ observations from IAGOS are compared in terms of the representation of the contrail formation potential and the presence of supersaturation. Differences are traced back to biases in ERA5 relative humidity fields. Those biases are addressed by applying a quantile mapping technique that significantly improved contrail estimation based on post-processed ERA5 data.
This article is included in the Encyclopedia of Geosciences
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025, https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollen can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
This article is included in the Encyclopedia of Geosciences
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025, https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity, which may lead to further climatic feedbacks. Using an atmospheric model and results from marine engine experiments that focused on fuel sulfur content reduction and exhaust wet scrubbing, we investigate how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
This article is included in the Encyclopedia of Geosciences
Julie Carles, Nicolas Bellouin, Najda Villefranque, and Jean-Louis Dufresne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3642, https://doi.org/10.5194/egusphere-2024-3642, 2025
Short summary
Short summary
Cirrus and contrails affect Earth’s energy balance with a lot of remaining uncertainty. The balance between solar and terrestrial radiation is delicate to calculate, and factors as cloud optical depth, shape, Sun position are crucial to estimate the effect of those clouds on radiation. Also, often neglected three dimensional paths of radiation, or 3D effects, may be important to account for at climatic scale.
This article is included in the Encyclopedia of Geosciences
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024, https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
Short summary
We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability to simulate mid-level clouds in summer and winter. By combining observational data from two different field campaigns, we show that an increase in the horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for cloud representation.
This article is included in the Encyclopedia of Geosciences
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024, https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast- and slow-rising air to see how moisture is (differently) transported. We find that for fast-ascending air more ice particles reach higher into the atmosphere and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
This article is included in the Encyclopedia of Geosciences
Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-3893, https://doi.org/10.5194/egusphere-2024-3893, 2024
Short summary
Short summary
Clouds reflect a substantial portion of the incoming solar radiation back into space. This capacity is determined by the number of cloud droplets, which in turn is influenced by the number of aerosol particles, forming the basis for aerosol-cloud-climate interactions. In this study, we use a simple mixed-layer approach to understand the effect of aerosol on cloud water in non-precipitating stratocumulus.
This article is included in the Encyclopedia of Geosciences
Kadavathu Sreekumar Apsara, Jayakumar Aravindakshan, Anurose Theethai Jacob, Saji Mohandas, Paul Field, Hamish Gordan, Thara Prabhakaran, Mahen Konwar, and Vijapurap Srinivasa Prasad
EGUsphere, https://doi.org/10.5194/egusphere-2024-3538, https://doi.org/10.5194/egusphere-2024-3538, 2024
Short summary
Short summary
Science has made significant strides in weather prediction, especially for intense tropical rainfall that can lead to floods and landslides. Our study aims to improve monsoon rainfall forecasts by analyzing raindrop sizes. Using a new approach to model raindrop growth, we achieved a more accurate depiction of large rainfall events. These improvements can be generalized to enhance early warning systems, offering reliable predictions that help reduce risks from severe tropical weather events.
This article is included in the Encyclopedia of Geosciences
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376, https://doi.org/10.5194/egusphere-2024-3376, 2024
Short summary
Short summary
We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs.
This article is included in the Encyclopedia of Geosciences
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397, https://doi.org/10.5194/egusphere-2024-3397, 2024
Short summary
Short summary
We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts.
This article is included in the Encyclopedia of Geosciences
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024, https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
This article is included in the Encyclopedia of Geosciences
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
This article is included in the Encyclopedia of Geosciences
Yi Li, Xiaoli Liu, and Hengjia Cai
Atmos. Chem. Phys., 24, 13525–13540, https://doi.org/10.5194/acp-24-13525-2024, https://doi.org/10.5194/acp-24-13525-2024, 2024
Short summary
Short summary
The influence of different aerosol modes on cloud processes remains controversial. We modified the aerosol spectra and concentrations to simulate a warm stratiform cloud process in Jiangxi, China, using the WRF-SBM scheme. Research shows that different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and the correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
This article is included in the Encyclopedia of Geosciences
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
Atmos. Chem. Phys., 24, 13403–13412, https://doi.org/10.5194/acp-24-13403-2024, https://doi.org/10.5194/acp-24-13403-2024, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol–cloud–climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
This article is included in the Encyclopedia of Geosciences
Cited articles
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large–scale environment, Part I, J. Atmos. Sci., 31, 674–701, 1974.
Baines, P. G.: Mixing in flows down gentle slopes into stratified environments, J. Fluid Mech., 443, 237–270, 2001.
Baines, P. G.: Two-dimensional plumes in stratified environment, J. Fluid Mech., 471, 315–337, 2002.
Batchelor, G. K.: Heat convection and buoyancy effects in fluids, Q. J. Roy. Meteor. Soc., 80, 339–358, 1954.
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–889, 2001.
Bretherton, C. S., McCaa, J. R., and Grenier, H.: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers, Part I: Description and 1-D results, Mon. Weather Rev., 132, 864–882, 2004.
Blyth, A. M., Cooper, W. A., and Jensen, J. B.: A study of the source of entrained air in Montana cumuli, J. Atmos. Sci., 45, 3944–3964, 1988.
Davies, R. M. and Taylor, G. K.: The mechanics of large bubbles rising through extended liquids and through liquids in tubes, P. R. Soc. London, 200, 375–390, 1950.
Derbyshire, S. H., Maidens, A. V., Milton, S. F., Stratton, R. A., and Willett, M. R.: Adaptive detrainment in a convective parameterization, Q. J. Roy. Meteor. Soc., 137, 1856–1871, 2011.
de Rooy, W. C., Bechtold, P., Frohlich, K., Hohenegger, C., Jonker, H., Mironov, D., Pier Siebesma, A., Teixeira, J., and Yano, J.-I.: Entrainment and detrainment in cumulus convection: an overview, Q. J. Roy. Meteor. Soc., 139, 1–19, https://doi.org/10.1002/qj.1959, 2013.
Diwan, S. S., Prasanth P., Sreenivas K. R., Deshpande S. M. and Narasimha, R.: Cumulus-type flows in the laboratory and on the computer: Simulating cloud form, evolution and large-scale structure. Bull. Amer. Meteor. Soc., in press, https://doi.org/10.1175/BAMS-D-12-00105.1, 2014.
Donner, L. J.: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects, J. Atmos. Sci., 50, 889–906, 1993.
Emanuel, K. A.: A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313–2335, 1991.
Fritsch, U.: Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 296 pp, 1995.
Gregory, D. and Rowntree, P. R.: A mass flux scheme with representation of cloud ensemble characteristics and stability-dependent closure, Mon. Weather Rev., 118, 1483–1506, 1990.
Holton, J. R.: A one–dimensional cumulus model including pressure perturbations. Mon. Wea. Rev., 101, 201–205, 1973.
Houghton, H. and Cramer, H.: A theory of entrainment in convective currents, J. Meteorol., 8, 95–102, 1951.
Kain, J. S. and Fritsch, J. L.: A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802, 1990.
Kasahara, A. and Asai, T.: Effects of an ensemble of convective elements on the large-scale motions of the atmosphere, J. Meteorol. Soc. Jpn., 45, 280–291, 1967.
Korczyk, P., Malinowski, S. P., and Kowalewski, T. A.: Mixing of cloud and clear air in centimeter scales observed in laboratory by means of Particle Image Velocimetry. Atmos. Res., 82, 173–182, https://doi.org/10.1016/j.atmosres.2005.09.009, 2006.
Korczyk, P. M., Kowalewski, T. A., and Malinowski, S. P.: Turbulent mixing of clouds with the environment: Small scale two phase evaporating flow investigated in a laboratory by particle image velocimetry, Physica D, 241, 288–296, 2012.
Kuo, H. L. and Raymond, W. H.: A quasi–one–dimensional cumulus model cloud model and parameterization of cumulus heating and mixing effects. Mon. Wea. Rev., 108, 991–1009, 1980.
Lamb, H.: Hydrodynamics, 6th Ed., Cambridge University Press, 738 pp., 1932.
Levine, J.: Spherical vortex theory of bubble-like motion in cumulus clouds, J. Meteorol., 16, 653–662, 1959.
List, E. J.: Turbulent jets and plumes, Annu. Rev. Fluid Mech., 14, 189–212, 1982.
Ludlam, F. H.: The hail problem, Nublia, 1, 13–96, 1958.
Ludlam, F. H. and Scorer, R. S.: Reviews of modern meteorology – 10, Convection in the atmosphere, Q. J. Roy. Meteor. Soc., 79, 317–341, 1953.
Malkus, J. S.: Recent advances in the study of convective clouds and their interaction with the environment, Tellus, 4, 71–87, 1952.
Malkus, J. S.: Some results of a trade-cumulus cloud investigation, J. Meteorol., 11, 220–237, 1954.
Malkus, J. S. and Scorer, R. S.: The erosion of cumulus towers, J. Meteorol., 12, 43–57, 1955.
Morton, B. R.: Buoyant plumes in a moist atmosphere, J. Fluid Mech., 2, 127–144, 1957.
Morton, B. R.: Forced plumes, J. Fluid Mech., 5, 151–163, 1959.
Morton, B. R.: On Telford's model for clear air convection, J. Atmos. Sci., 25, 135–138, 1968.
Morton, B. R.: Discreet dry convective entities, I: Review, in: The Physics and Parameterization of Moist Atmospheric Convection, edited by: Smith, R. K., NATO ASI, Kloster Seeon, Kluwer Academic Publishers, Dordrecht, 143–173, 1997a.
Morton, B. R.: Discreet dry convective entities, II: thermals and deflected jets, in: The Physics and Parameterization of Moist Atmospheric Convection, edited by: Smith, R. K., NATO ASI, Kloster Seeon, Kluwer Academic Publishers, Dordrecht, 175–210, 1997b.
Morton, B. R., Taylor, G. I., and Turner, J. S.: Turbulent gravitational convection from maintained and instantaneous sources, P. Phys. Soc., 74, 744–754, 1956.
Ooyama, V. K.: A theory on parameterization of cumulus convection, J. Meteorol. Soc. Jpn., 26, 3–40, 1971.
Ooyama, V. K.: On parameterization of cumulus convection, in: Dynamics of the Tropical Atmosphere, Notes from a Colloquium: Summer 1972: National Center for Atmospheric Research, Boulder, Colorado, 11 July 1972, 496–505, 1972.
Ottino, J. M.: The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge Texts in Applied Mathematics, Cambridge University Press, 364 pp., 1989.
Paluch, I. R.: The entrainment mechanism of Colorado cumuli, J. Atmos. Sci., 36, 2467–2478, 1979.
Plant, R. S.: A review of the theoretical basis for bulk mass flux convective parameterization, Atmos. Chem. Phys., 10, 3529–3544, https://doi.org/10.5194/acp-10-3529-2010, 2010.
Raymond, D. J.: Observational constraints on cumulus parameterizations, The Representation of Cumulus Convection in Numerical Models, Meteor. Mono., No. 46, Amer. Meteor. Soc., 17–28, 1993.
Raymond, D. J. and Blyth, A. M.: A stochastic mixing model for nonprecipitating cumulus clouds, J. Atmos. Sci., 43, 2708–2718, 1986.
Reuter, G. W.: A historical review of cumulus entrainment studies, B. Am. Meteor. Soc., 67, 151–154, 1986.
Sànchez, O., Raymond, D. J., Libersky, L., and Petschek, A. G.: The development of thermals from rest, J. Atmos. Sci., 46, 2280–2292, 1989.
Saunders, P. M.: Penetrative convection in stably stratified fluids, Tellus, 16, 177–194, 1962.
Scase, M. M., Caufield, C. P., Dalziel, S. B., and Hunt, J. C. R.: Time-dependent plumes and jets with decreasing source strengths, J. Fluid Mech., 563, 443–461, 2006.
Scorer, R. S.: Experiments on convection of isolated masses of buoyancy fluid, J. Fluid Mech., 2, 583–594, 1957.
Scorer, R. S. and Ludlam, F. H.: Bubble theory of penetrative convection, Q. J. Roy. Meteor. Soc., 79, 94–103, 1953.
Scorer, R. S. and Ronne, C.: Experiments with convection bubbles, Weather, 11, 151–154, 1956.
Sherwood, S. C., Hernández-Deckers, D., Colin, M., and Robinson, F.: Slippery thermals and the cumulus entrainment paradox, J. Atmos. Sci., 70, 2426–2442, 2013.
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H., Sanchez, E., Stevens, B., and Stevens, D. E.: A large eddy simulation intercomparison study of shallow cumulus convection, J. Atmos. Sci., 60, 1201–1219, 2003.
Simpson, J.: On cumulus entrainment and one-dimensional models, J. Atmos. Sci., 28, 449–455, 1971.
Simpson, J.: Reply, J. Atmos. Sci., 29, 220–225, 1972.
Simpson, J.: Cumulus clouds: early aircraft observations and entrainment hypotheses, in: Mesoscale Meteorology – Theories, Observations and Models, edited by: Lilly, D. K. and Gal-Chen, T., 355–373, Reidel, Dordrecht, the Netherlands, 1983a.
Simpson, J.: Cumulus clouds: interactions between laboratory experiments and observations as foundations for models, in: Mesoscale Meteorology – Theories, Observations and Models, edited by: Lilly, D. K. and Gal-Chen, T., 399–412, Dordrecht, the Netherlands, 1983b.
Simpson, J. and Wiggert, V.: Models of precipitating cumulus towers, Mon. Weather Rev., 97, 471–489, 1969.
Simpson, J., Simpson, R. H., Andrews, D. A., and Eaton, M. A.: Experimental cumulus dynamics, Rev. Geophys., 3, 387–431, 1965.
Soong, S.-T.: Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262–1285, 1974.
Squires, P.: The spatial variation of liquid water content and droplet concentration in cumuli, Tellus, 10, 372–380, 1958a.
Squires, P.: Penetrative downdraughts in cumuli, Tellus, 10, 381–389, 1958b.
Stommel, H.: Entrainment of air into a cumulus cloud, J. Meteorol., 4, 91–94, 1947.
Stommel, H.: Entrainment of air into a cumulus cloud II, J. Meteorol., 8, 127–129, 1951.
Sud, Y. C. and Walker, G. K.: Microphysics of clouds with relaxed Arakawa–Schubert scheme (McRAS), Part I: Design and evaluation with GATE Phase III data, J. Atmos. Sci., 56, 3196–3220, 1999.
Taylor, G. R. and Baker, M. B.: Entrainment and detrainment in cumulus clouds, J. Atmos. Sci., 48, 112–121, 1991.
Telford, J. W.: The convective mechanism in clear air, J. Atmos. Sci., 23, 652–666, 1966.
Telford, J. W.: Reply, J. Atmos. Sci., 25, 138–139, 1968.
Telford, J. W.: Turbulence, entrainment and mixing in cloud dynamics, Pure Appl. Geophys., 113, 1067–1084, 1975.
Townsend, A. A.: Entrainment and the structure of turbulent flow, J. Fluid Mech., 41, 13–46, 1970.
Turner, J. S.: Buoyant vortex rings, P. R. Soc. London, 239, 61–75, 1957.
Turner, J. S.: The "starting plume" in neutral surroundings, J. Atmos. Sci., 13, 356–368, 1962.
Turner, J. S.: Model experiments relating to thermal with increasing buoyancy, Q. J. Roy. Meteor. Soc., 89, 62–74, 1963a.
Turner, J. S.: The motion of buoyancy elements in turbulent surroundings, J. Fluid Mech., 16, 1–16, 1963b.
Turner, J. S.: The flow into an expanding spherical vortex, J. Fluid Mech., 18, 195–208, 1964.
Turner, J. S.: Buoyant plumes and thermals, Annu. Rev. Fluid Mech., 1, 29–44, 1969.
Turner, J. S.: Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows, J. Fluid Mech., 173, 431–471, 1986.
Warner, J.: On steady-state one-dimensional models of cumulus convection, J. Atmos. Sci., 27, 1035–1040, 1970.
Warner, J.: Comments "On cumulus entrainment and one–dimensional models", J. Atmos. Sci., 29, 218–219, 1972.
Woodward, B.: The motion in and around isolated thermals, Q. J. Roy. Meteor. Soc., 85, 144–151, 1959.
Yau, M. K., 1979: Perturbation pressure and cumulus convection. J. Atmos. Sci., 36, 690–694.
Yano, J.-I.: Mass-flux subgrid-scale parameterization in analogy with multi-component flows: a formulation towards scale independence, Geosci. Model Dev., 5, 1425–1440, https://doi.org/10.5194/gmd-5-1425-2012, 2012.
Yano, J.-I.: Formulation structure of the mass–flux convection parameterization. Dyn. Atmos. Ocean, 67, 1–28, https://doi.org/10.1016/j.dynatmoce.2014.04.002, 2014.
Yano, J.-I. and Baizig, H.: Single SCA-plume dynamics, Dyn. Atmos. Ocean, 58, 62–94, 2012.
Yano, J.-I. and Plant, R. S.: Convective quasi-equilibrium, Rev. Geophys., 50, RG4004, https://doi.org/10.1029/2011RG000378, 2012.
Yano, J.-I., Redelsperger, J.-L., Guichard, F., and Bechtold, P.: Mode decomposition as a methodology for developing convective-scale representations in global models, Q. J. Roy. Meteor. Soc., 131, 2313–2336, 2005.
Yano, J.-I., Benard, P., Couvreux, F., and Lahellec, A.: NAM-SCA: Nonhydrostatic Anelastic Model under Segmentally-Constant Approximation, Mon. Weather Rev., 138, 1957–1974, 2010.
Yano, J.-I., Cheedela, S. K., and Roff, G. L.: A compressed super-parameterization: test of NAM-SCA under single-column GCM configurations, Atmos. Chem. Phys. Discuss., 12, 28237–28303, https://doi.org/10.5194/acpd-12-28237-2012, 2012.
Yano, J.-I., Bister, M., Fuchs, Ž., Gerard, L., Phillips, V. T. J., Barkidija, S., and Piriou, J.-M.: Phenomenology of convection-parameterization closure, Atmos. Chem. Phys., 13, 4111–4131, https://doi.org/10.5194/acp-13-4111-2013, 2013.
Zhang, J., Lohmann, U., and Stier, P.: A microphysical parameterization for convective clouds in the ECHAM5 climate model: single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site, J. Geophys. Res., 110, D15S07, https://doi.org/10.1029/2004JD005128, 2005.
Altmetrics
Final-revised paper
Preprint