Articles | Volume 14, issue 13
https://doi.org/10.5194/acp-14-6739-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-6739-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigation of negative cloud radiative forcing over the Indian subcontinent and adjacent oceans during the summer monsoon season
B. V. Thampi
Laboratoire de Météorologie Dynamique, UMR8539, UPMC, BP99, 4 place Jussieu, 75252 Paris, France
now at: Science Systems and Applications, Inc. (SSAI), Hampton, VA, USA
R. Roca
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales, UMR5566, OMP, 14 Avenue E. Belin,
31400 Toulouse, France
31400 Toulouse, France
Related authors
No articles found.
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024, https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Short summary
This paper presents a database of tropical deep convective systems over the 2012–2020 period, built from a cloud-tracking algorithm called TOOCAN, which has been applied to homogenized infrared observations from a fleet of geostationary satellites. This database aims to analyze the tropical deep convective systems, the evolution of their associated characteristics over their life cycle, their organization, and their importance in the hydrological and energy cycle.
Rémy Roca, Lisa V. Alexander, Gerald Potter, Margot Bador, Rômulo Jucá, Steefan Contractor, Michael G. Bosilovich, and Sophie Cloché
Earth Syst. Sci. Data, 11, 1017–1035, https://doi.org/10.5194/essd-11-1017-2019, https://doi.org/10.5194/essd-11-1017-2019, 2019
Short summary
Short summary
This paper presents a database that is a collection of datasets of gridded 1° × 1° daily precipitation estimates from a variety of sources. It includes observations from in situ networks, satellite-based estimations and outputs from atmospheric reanalysis. All the datasets have been formatted in the same way to ease their manipulation. This database aims at facilitating intercomparisons and validation exercises performed by the scientific community.
M. Schröder, R. Roca, L. Picon, A. Kniffka, and H. Brogniez
Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, https://doi.org/10.5194/acp-14-11129-2014, 2014
Cited articles
Balachandran, S. and Rajeevan, M.: Sensitivity of surface radiation budget to clouds over the Asian monsoon region, J. Earth Syst. Sci., 116, 159–169, 2007.
Barker, H. W., Stephens, G. L., Partain, P. T., Bergman, J. B., Bonnel, B., Campana, K., Clothiaux, E. E., Clough, S., Cusack, S., Delamere, J., Edwards, J., Evans, K. F., Fouquart, Y., Freidenreich, S., Galin, V., Hou, Y., Kato, S., Li, J., Mlawer, E., Morcrette, J.-J., O'Hirok, W., Räisänen, P., Ramaswamy, V., Ritter, B., Rozanov, E., Schlesinger, M., Shibata, K., Sporyshev, P., Sun, Z., Wendisch, M., Wood, N., and Yang, F.: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds, J. Climate, 16, 2676–2699, 2003.
Bergman, J. W. and Hendon, H. H.: Calculating Monthly Radiative Fluxes and Heating Rates from Monthly Cloud Observations, J. Atmos. Sci., 55, 3471–3492, 1998.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, 2011.
Cess, R. D., Zhang, M., Wielicki, B. A., Young, D. F., Zhou, X. L., and Nikitenko, Y.: The Influence of the 1998 El Niño upon Cloud-Radiative Forcing over the Pacific Warm Pool, J. Climate, 14, 2129–2137, 2001.
Chambon, P., Jobard, I., Roca, R., and Viltard, N.: An investigation of the error budget of tropical rainfall accumulation derived from merged passive microwave and infrared satellite measurements, Q. J. Roy. Meteor. Soc., 139, 879–893, https://doi.org/10.1002/qj.1907, 2013.
Charlock, T. P. and Ramanathan, V.: The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics, J. Atmos. Sci., 42, 1408–1429, 1985.
Chou, M.-D., Suarez, M. J., Ho, C-H., Yan, M. M.-H., and Lee, K.-T.: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models, J. Climate, 11, 202–214, 1998.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005.
Cole, J., Barker, H. W., Loeb, N. G., and von Salzen, K.: Asessing simulated clouds and radiative fluxes using properties of clouds whose tops are exposed to space, J. Climate, 24, 2715–2727, 2011.
Collins, W. D.: Parameterization of generalized cloud overlap for radiative calculations in general circulation models, J. Atmos. Sci., 58, 3224–3242, 2001.
Desbois, M., Capderou, M., Eymard, L., Roca, R., Viltard, N., Viollier, M., and Karouche, N.: Megha- Tropiques: un satellite hydrométéorologique francoindien, La meteorologie, 53, 19–27, 2007.
Dessler, A. E. and Yang, P.: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data, J. Climate, 16, 1241–1247, 2003.
Devasthale, A. and Fueglistaler, S.: A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments, Atmos. Chem. Phys., 10, 4573–4582, https://doi.org/10.5194/acp-10-4573-2010, 2010.
Ellingson, R. G. and Fouquart, Y. : The intercomparison of radiation codes in climate models: An overview, J. Geophys. Res., 96, 8925–8927, 1991.
Ellingson, R. G. and Wiscombe, W. J.: The Spectral Radiance Experiment (SPECTRE): Project Description and Sample Results. B. Am. Meteorol. Soc., 77, 1967–1985, 1996.
Evans, J. S., Cooper, D. W., and Kinney, P.: On the propagation of error in air pollution measurements, Environ. Monit. Assess., 4, 139–153, 1984.
Fouquart, Y.: Radiation in boundary layer clouds, in: Report of the JSC/ CAS Workshop on Modelling of Cloud-Topped Boundary Layer, Fort Collins, Colorado, USA, 22–26 April, Appendix D, 40 pp., 1985.
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the earth's atmosphere: A new parameterization, Beitr. Phys. Atmos., 53, 35–62, 1980.
Fu, Q.: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models, J. Climate, 9, 2058–2082, 1996.
Futyan, J. M., Russell, J. E., and Harries, J. E.: Cloud radiative forcing in Pacific, African, and Atlantic tropical convective regions, J. Climate, 17, 3192–3202, 2004.
Geleyn, J.-F. and Hollingsworth, A.: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation, Beitr. Phys. Atmos., 52, 1–16, 1979.
Hahn, C. J., Rossow, W. B., and Warren, S. G.: ISCCP cloud properties associated with standard cloud types identified in individual surface observations, J. Climate, 14, 11–28, 2001.
Harrison, E. F., Minnis, P., Barkstrom, B. R., Ramanathan, V., Cess, R. D., and Gibson, G. G.: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment, J. Geophys. Res., 95, 18687–18703, 1990.
Hartmann, D. L., Moy, L. A., and Fu, Q.: Tropical convection and the energy balance at the top of the atmosphere, J. Climate, 14, 4495–4511, 2001.
Hu, Y. X. and Stamnes, K.: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, J. Climate, 6, 728–742, 1993.
Iacono, M. J., Mlawer, E. J., Clough, S. A., and Morcrette, J.-J.: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3, J. Geophys. Res., 105, 14873–14890, https://doi.org/10.1029/2000JD900091, 2000.
Jensen, E. J., Kinne, S., and Toon, O. B.: Tropical cirrus cloud radiative forcing: Sensitivity studies. Geophys. Res. Lett., 21, 2023–2026, 1994.
Key, J. R. and Schweiger, A. J.: Tools for atmospheric radiative transfer: Streamer and FluxNet, Computat. Geosci., 24, 443–451, https://doi.org/10.1016/S0098-3004(97)00130-1, 1998.
Key, J. R., Yang, P., Baum, B. A., and Nasiri, S. L.: Parameterization of shortwave ice cloud optical properties for various particle habits, J. Geophys. Res., 107, AAC 7-1–AAC 7-10, https://doi.org/10.1029/2001JD000742, 2002.
Kiehl, J. T.: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions, J. Climate, 7, 559–565, 1994.
Kiehl, J. T. and Ramanathan, V.: Comparison of cloud forcing derived from Earth Radiation Budget Experiment with that simulated by the NCAR Community climate Model, J. Geophys. Res., 95, 1679–1698, 1990.
Klein, S. A. and Jakob, C.: Validation and sensitivities of frontal clouds simulated by the ECMWF model, Mon. Weather Rev., 127, 2514–2531, 1999.
Liou, K.-N.: Influence of cirrus clouds on weather and climate processes: A global perspective, Mon. Weather Rev., 114, 1167–1199, 1986.
Liou, K. N. and Ou, S. C.: The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective, J. Geophys. Res., 94, 8599–8607, 1989.
Lo, E.: Gaussian error propagation applied to ecological data: post-ice-storm-downed woody biomass, Ecol. Monogr., 75, 451–466, 2005.
Loeb, N. G., Kato, S., Loukachine, K., and Manalo-Smith, N.: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth's Radiant Energy System instrument on the Terra satellite, Part I: Methodology. J. Atmos. Ocean. Tech., 22, 338–351, 2005.
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., Manalo-Smith, N., and Wong, T.: Toward optimal closure of the earth's top-of-atmosphere radiation budget, J. Climate, 22, 748–766, 2009a.
Loeb, N. G., Wielicki, B. A., Wong, T., and Parker, P. A.: Impact of data gaps on satellite broadband radiation records, J. Geophys. Res., 114, D11109, https://doi.org/10.1029/2008JD011183, 2009b.
Meenu, S., Rajeev, K., Parameswaran, K., and Suresh Raju, C.: Characteristics of the double intertropical convergence zone over the tropical Indian Ocean, J. Geophys. Res., 112, D11106, https://doi.org/10.1029/2006JD007950, 2007.
Meenu, S., Rajeev, K., Parameswaran, K., and Nair, A. K. M.: Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans, J. Geophys. Res., 115, D05205, https://doi.org/10.1029/2009JD011802, 2010.
Menzel, W. P., Frey, R. A., Zhang, H., Wylie, D. P., Moeller, C. C., Holz, R. E., Maddux, B., Baum, B. A., Strabala, K. I., and Gumley, L. E.: MODIS global cloud top pressure and amount estimation: Algorithm description and results, J. Appl. Meteorol. Clim., 47, 1175–1198, https://doi.org/10.1175/2007JAMC1705.1, 2008.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.A.: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.
Morcrette, J.-J., Barker, H. W., Cole, J., Iacono, M., and Pincus, R.: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system, Mon. Weather Rev., 136, 4773–4798, 2008.
Pai, D. S. and Rajeevan, M.: Clouds and cloud radiative forcing over tropical Indian ocean and their relationship with sea surface temperature, Curr. Sci. India, 75, 372–381, 1998.
Patil, S. D. and Yadav, R. K.: Large-scale changes in the cloud radiative forcing over the Indian region, Atmos. Environ., 39, 4609–4618, 2005.
Pavlakis, K. G., Hatzianastassiou, N., Matsoukas, C., Fotiadi, A., and Vardavas, I.: ENSO surface shortwave radiation forcing over the tropical Pacific, Atmos. Chem. Phys., 8, 5565–5577, https://doi.org/10.5194/acp-8-5565-2008, 2008.
Pincus, R., Barker, H. W., and Morcrette, J.-J.: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322, 2003.
Platt, C. M. R.: A parameterization of the visible extinction coefficient of ice clouds in terms of the ice/water content, J. Atmos. Sci., 54, 2083–2098, 1997.
Räisänen, P.: Parameterization of water and ice cloud near-infrared single-scattering co-albedo in broadband radiation schemes, J. Atmos. Sci., 56, 626–641, 1999.
Rajeevan, M. and Srinivasan, J.: Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region, J. Climate, 13, 650–657, 2000.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., and Hartmann, D.: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment, Science, 243, 57–63, 1989.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R.., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products, and Validation, J. Atmos. Sci., 62, 947–973, 2005.
Roca, R., Louvet, S., Picon, L., and Desbois, M.: A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE data, Meteorol. Atmos. Phys., 90, 49–65, 2004.
Rossow, W. B. and Zhang, Y. C.: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP datasets. 2. Validation and first results, J. Geophys. Res, 100, 1167–1197, 1995.
Rossow, W. B., Zhang, Y., and Wang, J.: A statistical model of cloud vertical structure based on reconciling cloud layer amounts inferred from satellites and radiosonde humidity profiles, J. Climate, 18, 3587–3605, 2005.
Schmidt, E. O., Arduini, R. F., Wielicki, B. A., Stone, R. S., and Tsay, S.-C.: Considerations for modeling thin cirrus effects via brightness temperature differences, J. Appl. Meteorol., 34, 447–459, 1995.
Slingo, A.: A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46, 1419–1427, 1989.
Slingo, A. and Schrecker, H. M.: On the shortwave radiative properties of stratiform water clouds, Q. J. Roy. Meteor. Soc., 108, 407–426, 1982.
Smith, G. L., Mlynczak, P. E., and Potter, G. L.: A technique using principal component analysis to compare seasonal cycles of Earth radiation from CERES and model computations, J. Geophys. Res., 117, D09116, https://doi.org/10.1029/2011JD017343, 2012.
Sohn, B.-J. and Schmetz, J.: Water vapor–induced OLR variations associated with high cloud changes over the tropics: A study from Meteosat-5 observations, J. Climate, 17, 1987–1996, 2004.
Sohn, B.-J. and Bennartz, R.: Contribution of water vapor to observational estimates of longwave cloud radiative forcing, J. Geophys. Res., 113, D20107, https://doi.org/10.1029/2008JD010053, 2008.
Sohn, B.-J., Schmetz, J., Stuhlmann, R., and Lee, J. -Y.: Dry bias in satellite-derived clear-sky water vapor and its contribution to longwave cloud radiative forcing, J. Climate, 19, 5570–5580, 2006.
Stephens, G. L., Tsay, S. C., Stackhouse Jr., P. W., and Platau, P. J.: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback, J. Atmos. Sci., 47, 1742–1753, 1990.
Stephens, G. L., Wood, N. B., and Gabriel, P. M.: An Assessment of the parameterization of subgrid-scale cloud Effects on radiative transfer. Part I: Vertical overlap, J. Atmos. Sci., 61, 715–732, 2004.
Sun, Z. and Shine, K. P.: Studies of the radiative properties of ice and mixed-phase clouds, Q. J. Roy. Meteor. Soc., 120, 111–137, 1994.
Tang, X. and Chen, B: Cloud types associated with the Asian summer monsoons as determined from MODIS/TERRA measurements and a comparison with surface observations, Geophys. Res. Lett., 33, L07814, https://doi.org/10.1029/2006GL026004, 2006.
Taylor, J. R.: An introduction to error analysis, University Science Books, Mill Valley, California, USA, 1982.
Tian, L. and Curry, J. A.: Cloud overlap statistics, J. Geophys. Res., 94, 9925–9935, 1989.
Warren, S. G., Hahn, C. J., and London, J.: Simultaneous occurrence of different cloud types, J. Clim. Appl. Meteorol., 24, 658–667, 1985.
Weare, B. C.: Combined satellite- and surface-based observations of clouds, J. Climate, 12, 897–913, 1999.
Webb, M., Senior, C., Bony, S., and Morcrette, J.-J.: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models, Clim. Dynam., 17, 905–922, 2001.
Wentz, F. J.: A well-calibrated ocean algorithm for SSM/I, J. Geophys. Res., 102, 8703–8718, 1997.
Wielicki, B. A., Cess, R. D., King, M. D., Randall, D. A., and Harrison, E. F.: Mission to Planet Earth: Role of clouds and radiation in climate, B. Am. Meteorol. Soc., 76, 2125–2153, 1995.
Wyser, K. and Yang, P.: Average ice crystal size and bulk shortwave single-scattering properties of cirrus clouds, Atmos. Res., 49, 315–335, 1998.
Young, D. F., Minnis, P., Doelling, D. R., Gibson, G. G., and Wong, T.: Temporal interpolation methods for the Clouds and the Earth's Radiant Energy System (CERES) Experiment, J. Appl. Meteorol., 37, 572–590, 1998.
Zhang, M. H., Lin, W. Y., Klein, S. A., Bacmeister, J. T., Bony, S., Cederwall, R. T., Del Genio, A. D., Hack, J. J., Loeb, N. G., Lohmann, U., Minnis, P., Musat, I., Pincus, R., Stier, P., Suarez, M. J., Webb, M. J., Wu, J. B., Xie, S. C., and Yao, M.-S.: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements, J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021, 2005.
Zhang, Y., Macke, A., and Albers, F.: Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing, Atmos. Res., 52, 59–75, 1999.
Zhang, Y. C., Rossow, W. B., and Lacis, A. A.: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP datasets. 1. Method and sensitivity to input data uncertainties, J. Geophys. Res, 100, 1149–1165, 1995.
Zhang, Y.-C., Rossow, W. B., Lacis, A. A., Oinas, V., and Mishchenko, M. I.: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global datasets: Refinements of the radiative transfer model and the input data, J. Geophys. Res., 109, D19105, https://doi.org/10.1029/2003JD004457, 2004.
Zuluaga, M. D., Hoyos, C. D., and Webster, P. J.: Spatial and temporal distribution of latent heating in the south Asian monsoon region, J. Climate, 23, 2010–2029, https://doi.org/10.1175/2009JCLI3026.1, 2010.
Altmetrics
Final-revised paper
Preprint