Articles | Volume 14, issue 2
https://doi.org/10.5194/acp-14-577-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-577-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements
C. Cressot
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, 91191 Gif-sur-Yvette, France
F. Chevallier
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, 91191 Gif-sur-Yvette, France
P. Bousquet
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, 91191 Gif-sur-Yvette, France
C. Crevoisier
Laboratoire de Météorologie Dynamique/CNRS/IPSL, Ecole Polytechnique, Palaiseau, France
E. J. Dlugokencky
Climate Monitoring and Diagnostics Laboratory, NOAA, Boulder, Colorado, USA
A. Fortems-Cheiney
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, 91191 Gif-sur-Yvette, France
C. Frankenberg
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
R. Parker
Earth Observation Science, Space Research Centre, University of Leicester, Leicester, UK
Laboratoire des Sciences du Climat et de l'Environnement, UMR8212, 91191 Gif-sur-Yvette, France
R. A. Scheepmaker
SRON Netherlands Institute for Space Research, Utrecht, the Netherlands
S. A. Montzka
Climate Monitoring and Diagnostics Laboratory, NOAA, Boulder, Colorado, USA
P. B. Krummel
Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
L. P. Steele
Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
R. L. Langenfelds
Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
Viewed
Total article views: 8,148 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Mar 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,095 | 3,880 | 173 | 8,148 | 167 | 133 |
- HTML: 4,095
- PDF: 3,880
- XML: 173
- Total: 8,148
- BibTeX: 167
- EndNote: 133
Total article views: 6,789 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jan 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,393 | 3,246 | 150 | 6,789 | 152 | 131 |
- HTML: 3,393
- PDF: 3,246
- XML: 150
- Total: 6,789
- BibTeX: 152
- EndNote: 131
Total article views: 1,359 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Mar 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
702 | 634 | 23 | 1,359 | 15 | 2 |
- HTML: 702
- PDF: 634
- XML: 23
- Total: 1,359
- BibTeX: 15
- EndNote: 2
Cited
65 citations as recorded by crossref.
- Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data A. Turner et al. 10.5194/acp-15-7049-2015
- Atmospheric CH<sub>4</sub> and CO<sub>2</sub> enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes R. Parker et al. 10.5194/acp-16-10111-2016
- Satellite observations of atmospheric methane and their value for quantifying methane emissions D. Jacob et al. 10.5194/acp-16-14371-2016
- Analysis of total column CO<sub>2</sub> and CH<sub>4</sub> measurements in Berlin with WRF-GHG X. Zhao et al. 10.5194/acp-19-11279-2019
- Methane profiles from GOSAT thermal infrared spectra A. de Lange & J. Landgraf 10.5194/amt-11-3815-2018
- Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments Z. Qu et al. 10.5194/acp-21-14159-2021
- Assimilation of GOSAT Methane in the Hemispheric CMAQ; Part I: Design of the Assimilation System S. Voshtani et al. 10.3390/rs14020371
- The MUSICA IASI CH<sub>4</sub> and N<sub>2</sub>O products and their comparison to HIPPO, GAW and NDACC FTIR references O. García et al. 10.5194/amt-11-4171-2018
- Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Z. Tan et al. 10.5194/acp-16-12649-2016
- Assessing 5 years of GOSAT Proxy XCH<sub>4</sub> data and associated uncertainties R. Parker et al. 10.5194/amt-8-4785-2015
- Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia Y. Yin et al. 10.5194/acp-21-12631-2021
- Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane Y. Zhang et al. 10.5194/acp-18-15959-2018
- MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane G. Ehret et al. 10.3390/rs9101052
- Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations Z. Qu et al. 10.1088/1748-9326/ac8754
- Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources K. Qin et al. 10.5194/acp-24-3009-2024
- The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI J. Zhang et al. 10.3390/atmos13020177
- Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations R. Parker et al. 10.5194/bg-17-5669-2020
- The global methane budget 2000–2012 M. Saunois et al. 10.5194/essd-8-697-2016
- Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015 J. Maasakkers et al. 10.5194/acp-19-7859-2019
- Assessment of seasonal variations of carbon dioxide concentration in Iran using GOSAT data S. Mousavi et al. 10.1111/1477-8947.12121
- Accounting for Transport Error in Inversions: An Urban Synthetic Data Experiment S. Ghosh et al. 10.1029/2020EA001272
- Inverse modeling of 2010–2022 satellite observations shows that inundation of the wet tropics drove the 2020–2022 methane surge Z. Qu et al. 10.1073/pnas.2402730121
- Satellite-derived methane hotspot emission estimates using a fast data-driven method M. Buchwitz et al. 10.5194/acp-17-5751-2017
- Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere A. Ostler et al. 10.5194/amt-9-4843-2016
- Spatial and temporal distribution of carbon dioxide gas using GOSAT data over IRAN S. Falahatkar et al. 10.1007/s10661-017-6285-8
- Wetland emission and atmospheric sink changes explain methane growth in 2020 S. Peng et al. 10.1038/s41586-022-05447-w
- Assimilation of multiple datasets results in large differences in regional- to global-scale NEE and GPP budgets simulated by a terrestrial biosphere model C. Bacour et al. 10.5194/bg-20-1089-2023
- East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis R. Liang et al. 10.5194/acp-23-8039-2023
- Error Budget of the MEthane Remote LIdar missioN and Its Impact on the Uncertainties of the Global Methane Budget P. Bousquet et al. 10.1029/2018JD028907
- Development and Validation of an End-to-End Simulator and Gas Concentration Retrieval Processor Applied to the MERLIN Lidar Mission V. Cassé et al. 10.3390/rs13142679
- Constraints on methane emissions in North America from future geostationary remote-sensing measurements N. Bousserez et al. 10.5194/acp-16-6175-2016
- Global inverse modeling of CH<sub>4</sub> sources and sinks: an overview of methods S. Houweling et al. 10.5194/acp-17-235-2017
- Diagnostic methods for atmospheric inversions of long-lived greenhouse gases A. Michalak et al. 10.5194/acp-17-7405-2017
- Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set M. Buchwitz et al. 10.1016/j.rse.2016.12.027
- Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets Y. Zhao et al. 10.5194/acp-20-9525-2020
- Interpreting contemporary trends in atmospheric methane A. Turner et al. 10.1073/pnas.1814297116
- The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project P. Ricaud et al. 10.1016/j.rse.2021.112688
- The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements R. Desjardins et al. 10.1016/j.agrformet.2017.09.003
- Where to place methane monitoring sites in China to better assist carbon management X. Zhang et al. 10.1038/s41612-023-00359-6
- Use of Assimilation Analysis in 4D-Var Source Inversion: Observing System Simulation Experiments (OSSEs) with GOSAT Methane and Hemispheric CMAQ S. Voshtani et al. 10.3390/atmos14040758
- Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion A. Berchet et al. 10.5194/bg-12-5393-2015
- Inverse modelling of CH<sub>4</sub> emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY M. Alexe et al. 10.5194/acp-15-113-2015
- Objectified quantification of uncertainties in Bayesian atmospheric inversions A. Berchet et al. 10.5194/gmd-8-1525-2015
- Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations R. Parker et al. 10.1016/j.rse.2018.02.011
- On the use of satellite-derived CH<sub>4</sub> : CO<sub>2</sub> columns in a joint inversion of CH<sub>4</sub> and CO<sub>2</sub> fluxes S. Pandey et al. 10.5194/acp-15-8615-2015
- Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins L. Shen et al. 10.5194/acp-22-11203-2022
- Variability and quasi-decadal changes in the methane budget over the period 2000–2012 M. Saunois et al. 10.5194/acp-17-11135-2017
- Large XCH<sub>4</sub> anomaly in summer 2013 over northeast Asia observed by GOSAT M. Ishizawa et al. 10.5194/acp-16-9149-2016
- Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories E. Chan et al. 10.1021/acs.est.0c04117
- Biogenic link to the recent increase in atmospheric methane over India A. Singh et al. 10.1016/j.jenvman.2021.112526
- Temperature dependence of the absorption of the R(6) manifold of the 2ν3 band of methane in air in support of the MERLIN mission S. Vasilchenko et al. 10.1016/j.jqsrt.2023.108483
- Decadal trends in global CO emissions as seen by MOPITT Y. Yin et al. 10.5194/acp-15-13433-2015
- Can we detect regional methane anomalies? A comparison between three observing systems C. Cressot et al. 10.5194/acp-16-9089-2016
- Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales A. Turner et al. 10.5194/acp-18-8265-2018
- Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations R. Locatelli et al. 10.5194/acp-15-9765-2015
- Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations J. Xu et al. 10.3390/atmos13040525
- National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations L. Shen et al. 10.1038/s41467-023-40671-6
- Spatiotemporal variability of methane over the Amazon from satellite observations I. Ribeiro et al. 10.1007/s00376-016-5138-7
- Bias Correction of the Ratio of Total Column CH4 to CO2 Retrieved from GOSAT Spectra H. Oshio et al. 10.3390/rs12193155
- Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations Y. Zhang et al. 10.5194/acp-21-3643-2021
- Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model I. Stanevich et al. 10.5194/gmd-13-3839-2020
- TCCON Philippines: First Measurement Results, Satellite Data and Model Comparisons in Southeast Asia V. Velazco et al. 10.3390/rs9121228
- A decade of GOSAT Proxy satellite CH<sub>4</sub> observations R. Parker et al. 10.5194/essd-12-3383-2020
- Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH<sub>4</sub> ObsPack) and satellite (GOSAT) observations X. Lu et al. 10.5194/acp-21-4637-2021
- An integrated analysis of contemporary methane emissions and concentration trends over China using in situ and satellite observations and model simulations H. Tan et al. 10.5194/acp-22-1229-2022
65 citations as recorded by crossref.
- Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data A. Turner et al. 10.5194/acp-15-7049-2015
- Atmospheric CH<sub>4</sub> and CO<sub>2</sub> enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes R. Parker et al. 10.5194/acp-16-10111-2016
- Satellite observations of atmospheric methane and their value for quantifying methane emissions D. Jacob et al. 10.5194/acp-16-14371-2016
- Analysis of total column CO<sub>2</sub> and CH<sub>4</sub> measurements in Berlin with WRF-GHG X. Zhao et al. 10.5194/acp-19-11279-2019
- Methane profiles from GOSAT thermal infrared spectra A. de Lange & J. Landgraf 10.5194/amt-11-3815-2018
- Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments Z. Qu et al. 10.5194/acp-21-14159-2021
- Assimilation of GOSAT Methane in the Hemispheric CMAQ; Part I: Design of the Assimilation System S. Voshtani et al. 10.3390/rs14020371
- The MUSICA IASI CH<sub>4</sub> and N<sub>2</sub>O products and their comparison to HIPPO, GAW and NDACC FTIR references O. García et al. 10.5194/amt-11-4171-2018
- Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Z. Tan et al. 10.5194/acp-16-12649-2016
- Assessing 5 years of GOSAT Proxy XCH<sub>4</sub> data and associated uncertainties R. Parker et al. 10.5194/amt-8-4785-2015
- Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia Y. Yin et al. 10.5194/acp-21-12631-2021
- Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane Y. Zhang et al. 10.5194/acp-18-15959-2018
- MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane G. Ehret et al. 10.3390/rs9101052
- Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations Z. Qu et al. 10.1088/1748-9326/ac8754
- Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources K. Qin et al. 10.5194/acp-24-3009-2024
- The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI J. Zhang et al. 10.3390/atmos13020177
- Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations R. Parker et al. 10.5194/bg-17-5669-2020
- The global methane budget 2000–2012 M. Saunois et al. 10.5194/essd-8-697-2016
- Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015 J. Maasakkers et al. 10.5194/acp-19-7859-2019
- Assessment of seasonal variations of carbon dioxide concentration in Iran using GOSAT data S. Mousavi et al. 10.1111/1477-8947.12121
- Accounting for Transport Error in Inversions: An Urban Synthetic Data Experiment S. Ghosh et al. 10.1029/2020EA001272
- Inverse modeling of 2010–2022 satellite observations shows that inundation of the wet tropics drove the 2020–2022 methane surge Z. Qu et al. 10.1073/pnas.2402730121
- Satellite-derived methane hotspot emission estimates using a fast data-driven method M. Buchwitz et al. 10.5194/acp-17-5751-2017
- Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere A. Ostler et al. 10.5194/amt-9-4843-2016
- Spatial and temporal distribution of carbon dioxide gas using GOSAT data over IRAN S. Falahatkar et al. 10.1007/s10661-017-6285-8
- Wetland emission and atmospheric sink changes explain methane growth in 2020 S. Peng et al. 10.1038/s41586-022-05447-w
- Assimilation of multiple datasets results in large differences in regional- to global-scale NEE and GPP budgets simulated by a terrestrial biosphere model C. Bacour et al. 10.5194/bg-20-1089-2023
- East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis R. Liang et al. 10.5194/acp-23-8039-2023
- Error Budget of the MEthane Remote LIdar missioN and Its Impact on the Uncertainties of the Global Methane Budget P. Bousquet et al. 10.1029/2018JD028907
- Development and Validation of an End-to-End Simulator and Gas Concentration Retrieval Processor Applied to the MERLIN Lidar Mission V. Cassé et al. 10.3390/rs13142679
- Constraints on methane emissions in North America from future geostationary remote-sensing measurements N. Bousserez et al. 10.5194/acp-16-6175-2016
- Global inverse modeling of CH<sub>4</sub> sources and sinks: an overview of methods S. Houweling et al. 10.5194/acp-17-235-2017
- Diagnostic methods for atmospheric inversions of long-lived greenhouse gases A. Michalak et al. 10.5194/acp-17-7405-2017
- Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set M. Buchwitz et al. 10.1016/j.rse.2016.12.027
- Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets Y. Zhao et al. 10.5194/acp-20-9525-2020
- Interpreting contemporary trends in atmospheric methane A. Turner et al. 10.1073/pnas.1814297116
- The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project P. Ricaud et al. 10.1016/j.rse.2021.112688
- The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements R. Desjardins et al. 10.1016/j.agrformet.2017.09.003
- Where to place methane monitoring sites in China to better assist carbon management X. Zhang et al. 10.1038/s41612-023-00359-6
- Use of Assimilation Analysis in 4D-Var Source Inversion: Observing System Simulation Experiments (OSSEs) with GOSAT Methane and Hemispheric CMAQ S. Voshtani et al. 10.3390/atmos14040758
- Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion A. Berchet et al. 10.5194/bg-12-5393-2015
- Inverse modelling of CH<sub>4</sub> emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY M. Alexe et al. 10.5194/acp-15-113-2015
- Objectified quantification of uncertainties in Bayesian atmospheric inversions A. Berchet et al. 10.5194/gmd-8-1525-2015
- Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations R. Parker et al. 10.1016/j.rse.2018.02.011
- On the use of satellite-derived CH<sub>4</sub> : CO<sub>2</sub> columns in a joint inversion of CH<sub>4</sub> and CO<sub>2</sub> fluxes S. Pandey et al. 10.5194/acp-15-8615-2015
- Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins L. Shen et al. 10.5194/acp-22-11203-2022
- Variability and quasi-decadal changes in the methane budget over the period 2000–2012 M. Saunois et al. 10.5194/acp-17-11135-2017
- Large XCH<sub>4</sub> anomaly in summer 2013 over northeast Asia observed by GOSAT M. Ishizawa et al. 10.5194/acp-16-9149-2016
- Eight-Year Estimates of Methane Emissions from Oil and Gas Operations in Western Canada Are Nearly Twice Those Reported in Inventories E. Chan et al. 10.1021/acs.est.0c04117
- Biogenic link to the recent increase in atmospheric methane over India A. Singh et al. 10.1016/j.jenvman.2021.112526
- Temperature dependence of the absorption of the R(6) manifold of the 2ν3 band of methane in air in support of the MERLIN mission S. Vasilchenko et al. 10.1016/j.jqsrt.2023.108483
- Decadal trends in global CO emissions as seen by MOPITT Y. Yin et al. 10.5194/acp-15-13433-2015
- Can we detect regional methane anomalies? A comparison between three observing systems C. Cressot et al. 10.5194/acp-16-9089-2016
- Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales A. Turner et al. 10.5194/acp-18-8265-2018
- Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations R. Locatelli et al. 10.5194/acp-15-9765-2015
- Long-Term Trends and Spatiotemporal Variations in Atmospheric XCH4 over China Utilizing Satellite Observations J. Xu et al. 10.3390/atmos13040525
- National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations L. Shen et al. 10.1038/s41467-023-40671-6
- Spatiotemporal variability of methane over the Amazon from satellite observations I. Ribeiro et al. 10.1007/s00376-016-5138-7
- Bias Correction of the Ratio of Total Column CH4 to CO2 Retrieved from GOSAT Spectra H. Oshio et al. 10.3390/rs12193155
- Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations Y. Zhang et al. 10.5194/acp-21-3643-2021
- Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model I. Stanevich et al. 10.5194/gmd-13-3839-2020
- TCCON Philippines: First Measurement Results, Satellite Data and Model Comparisons in Southeast Asia V. Velazco et al. 10.3390/rs9121228
- A decade of GOSAT Proxy satellite CH<sub>4</sub> observations R. Parker et al. 10.5194/essd-12-3383-2020
- Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH<sub>4</sub> ObsPack) and satellite (GOSAT) observations X. Lu et al. 10.5194/acp-21-4637-2021
- An integrated analysis of contemporary methane emissions and concentration trends over China using in situ and satellite observations and model simulations H. Tan et al. 10.5194/acp-22-1229-2022
Saved (final revised paper)
Latest update: 21 Nov 2024
Altmetrics
Final-revised paper
Preprint