Articles | Volume 14, issue 23
https://doi.org/10.5194/acp-14-12763-2014
https://doi.org/10.5194/acp-14-12763-2014
Research article
 | 
05 Dec 2014
Research article |  | 05 Dec 2014

Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch

A. D. Griffiths, F. Conen, E. Weingartner, L. Zimmermann, S. D. Chambers, A. G. Williams, and M. Steinbacher

Abstract. Atmospheric composition measurements at Jungfraujoch are affected intermittently by boundary-layer air which is brought to the station by processes including thermally driven (anabatic) mountain winds. Using observations of radon-222, and a new objective analysis method, we quantify the land-surface influence at Jungfraujoch hour by hour and detect the presence of anabatic winds on a daily basis. During 2010–2011, anabatic winds occurred on 40% of days, but only from April to September. Anabatic wind days were associated with warmer air temperatures over a large fraction of Europe and with a shift in air-mass properties, even when comparing days with a similar mean radon concentration. Excluding days with anabatic winds, however, did not lead to a better definition of the unperturbed aerosol background than a definition based on radon alone. This implies that a radon threshold reliably excludes local influences from both anabatic and non-anabatic vertical-transport processes.

Download
Short summary
Radon detectors at Bern and Jungfraujoch were used to monitor the transport of radon-rich boundary layer air from the Swiss Plateau to the Alpine ridge. Radon was successfully used to discriminate between different types of vertical transport, using the shape of the diurnal cycle to identify days with upslope mountain winds. For many air-mass properties, however, the total land-surface influence (indicated by the radon concentration) was more decisive than the type of vertical transport.
Altmetrics
Final-revised paper
Preprint