Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 13, issue 1
Atmos. Chem. Phys., 13, 327–346, 2013
https://doi.org/10.5194/acp-13-327-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 13, 327–346, 2013
https://doi.org/10.5194/acp-13-327-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Jan 2013

Research article | 11 Jan 2013

Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear

M. Riemer1, M. T. Montgomery2,3, and M. E. Nicholls4 M. Riemer et al.
  • 1Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, Germany
  • 2Department of Meteorology, Naval Postgraduate School, Monterey, CA, USA
  • 3NOAA's Hurricane Research Division, Miami, FL, USA
  • 4University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA

Abstract. Recent work has developed a new framework for the impact of vertical wind shear on the intensity evolution of tropical cyclones. A focus of this framework is on the frustration of the tropical cyclone's power machine by shear-induced, persistent downdrafts that flush relatively cool and dry (lower equivalent potential temperature, θe) air into the storm's inflow layer. These previous results have been based on idealised numerical experiments for which we have deliberately chosen a simple set of physical parameterisations. Before efforts are undertaken to test the proposed framework with real atmospheric data, we assess here the robustness of our previous results in a more realistic and representative experimental setup by surveying and diagnosing five additional numerical experiments. The modifications of the experimental setup comprise the values of the exchange coefficients of surface heat and momentum fluxes, the inclusion of experiments with ice microphysics, and the consideration of weaker, but still mature tropical cyclones.

In all experiments, the depression of the inflow layer θe values is significant and all tropical cyclones exhibit the same general structural changes when interacting with the imposed vertical wind shear. Tropical cyclones in which strong downdrafts occur more frequently exhibit a more pronounced depression of inflow layer θe outside of the eyewall in our experiments. The magnitude of the θe depression underneath the eyewall early after shear is imposed in our experiments correlates well with the magnitude of the ensuing weakening of the respective tropical cyclone. Based on the evidence presented, it is concluded that the newly proposed framework is a robust description of intensity modification in our suite of experiments.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint