Articles | Volume 13, issue 24
https://doi.org/10.5194/acp-13-12525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-12525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulated radiative forcing from contrails and contrail cirrus
C.-C. Chen
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA
A. Gettelman
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA
Viewed
Total article views: 4,009 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,219 | 1,615 | 175 | 4,009 | 123 | 90 |
- HTML: 2,219
- PDF: 1,615
- XML: 175
- Total: 4,009
- BibTeX: 123
- EndNote: 90
Total article views: 3,023 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Dec 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,714 | 1,171 | 138 | 3,023 | 95 | 83 |
- HTML: 1,714
- PDF: 1,171
- XML: 138
- Total: 3,023
- BibTeX: 95
- EndNote: 83
Total article views: 986 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
505 | 444 | 37 | 986 | 28 | 7 |
- HTML: 505
- PDF: 444
- XML: 37
- Total: 986
- BibTeX: 28
- EndNote: 7
Cited
28 citations as recorded by crossref.
- Impacts of multi-layer overlap on contrail radiative forcing I. Sanz-Morère et al. 10.5194/acp-21-1649-2021
- The climate impact of COVID-19-induced contrail changes A. Gettelman et al. 10.5194/acp-21-9405-2021
- Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions A. Bier et al. 10.1002/2017JD027011
- Exploring the uncertainties in the aviation soot–cirrus effect M. Righi et al. 10.5194/acp-21-17267-2021
- Marginal climate and air quality costs of aviation emissions C. Grobler et al. 10.1088/1748-9326/ab4942
- Formation and radiative forcing of contrail cirrus B. Kärcher 10.1038/s41467-018-04068-0
- Detection flying aircraft from Landsat 8 OLI data F. Zhao et al. 10.1016/j.isprsjprs.2018.05.001
- Reducing Uncertainty in Contrail Radiative Forcing Resulting from Uncertainty in Ice Crystal Properties I. Sanz-Morère et al. 10.1021/acs.estlett.0c00150
- Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model U. Schumann & B. Mayer 10.5194/acp-17-13833-2017
- Estimating the Effective Radiative Forcing of Contrail Cirrus M. Bickel et al. 10.1175/JCLI-D-19-0467.1
- Reanalysis-driven simulations may overestimate persistent contrail formation by 100%–250% A. Agarwal et al. 10.1088/1748-9326/ac38d9
- The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018 D. Lee et al. 10.1016/j.atmosenv.2020.117834
- Dehydration effects from contrails in a coupled contrail–climate model U. Schumann et al. 10.5194/acp-15-11179-2015
- Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions A. Bier & U. Burkhardt 10.1029/2018JD029155
- Climate impact of aircraft-induced cirrus assessed from satellite observations before and during COVID-19 J. Quaas et al. 10.1088/1748-9326/abf686
- Reduced ice number concentrations in contrails from low-aromatic biofuel blends T. Bräuer et al. 10.5194/acp-21-16817-2021
- Beyond Contrail Avoidance: Efficacy of Flight Altitude Changes to Minimise Contrail Climate Forcing R. Teoh et al. 10.3390/aerospace7090121
- Quantifying aviation’s contribution to global warming M. Klöwer et al. 10.1088/1748-9326/ac286e
- Properties of young contrails – a parametrisation based on large-eddy simulations S. Unterstrasser 10.5194/acp-16-2059-2016
- Towards Determining the Contrail Cirrus Efficacy M. Ponater et al. 10.3390/aerospace8020042
- Simulated 2050 aviation radiative forcing from contrails and aerosols C. Chen & A. Gettelman 10.5194/acp-16-7317-2016
- Mapping global flying aircraft activities using Landsat 8 and cloud computing F. Zhao et al. 10.1016/j.isprsjprs.2021.12.003
- On the Life Cycle of Individual Contrails and Contrail Cirrus U. Schumann & A. Heymsfield 10.1175/AMSMONOGRAPHS-D-16-0005.1
- Simple Versus Complex Physical Representation of the Radiative Forcing From Linear Contrails: A Sensitivity Analysis R. Rodríguez De León et al. 10.1002/2017JD027861
- Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry P. Huszar et al. 10.5194/acp-13-10027-2013
- Persistent Contrails and Contrail Cirrus. Part I: Large-Eddy Simulations from Inception to Demise D. Lewellen et al. 10.1175/JAS-D-13-0316.1
- Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II G. Brasseur et al. 10.1175/BAMS-D-13-00089.1
- Reassessing properties and radiative forcing of contrail cirrus using a climate model L. Bock & U. Burkhardt 10.1002/2016JD025112
24 citations as recorded by crossref.
- Impacts of multi-layer overlap on contrail radiative forcing I. Sanz-Morère et al. 10.5194/acp-21-1649-2021
- The climate impact of COVID-19-induced contrail changes A. Gettelman et al. 10.5194/acp-21-9405-2021
- Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions A. Bier et al. 10.1002/2017JD027011
- Exploring the uncertainties in the aviation soot–cirrus effect M. Righi et al. 10.5194/acp-21-17267-2021
- Marginal climate and air quality costs of aviation emissions C. Grobler et al. 10.1088/1748-9326/ab4942
- Formation and radiative forcing of contrail cirrus B. Kärcher 10.1038/s41467-018-04068-0
- Detection flying aircraft from Landsat 8 OLI data F. Zhao et al. 10.1016/j.isprsjprs.2018.05.001
- Reducing Uncertainty in Contrail Radiative Forcing Resulting from Uncertainty in Ice Crystal Properties I. Sanz-Morère et al. 10.1021/acs.estlett.0c00150
- Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model U. Schumann & B. Mayer 10.5194/acp-17-13833-2017
- Estimating the Effective Radiative Forcing of Contrail Cirrus M. Bickel et al. 10.1175/JCLI-D-19-0467.1
- Reanalysis-driven simulations may overestimate persistent contrail formation by 100%–250% A. Agarwal et al. 10.1088/1748-9326/ac38d9
- The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018 D. Lee et al. 10.1016/j.atmosenv.2020.117834
- Dehydration effects from contrails in a coupled contrail–climate model U. Schumann et al. 10.5194/acp-15-11179-2015
- Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions A. Bier & U. Burkhardt 10.1029/2018JD029155
- Climate impact of aircraft-induced cirrus assessed from satellite observations before and during COVID-19 J. Quaas et al. 10.1088/1748-9326/abf686
- Reduced ice number concentrations in contrails from low-aromatic biofuel blends T. Bräuer et al. 10.5194/acp-21-16817-2021
- Beyond Contrail Avoidance: Efficacy of Flight Altitude Changes to Minimise Contrail Climate Forcing R. Teoh et al. 10.3390/aerospace7090121
- Quantifying aviation’s contribution to global warming M. Klöwer et al. 10.1088/1748-9326/ac286e
- Properties of young contrails – a parametrisation based on large-eddy simulations S. Unterstrasser 10.5194/acp-16-2059-2016
- Towards Determining the Contrail Cirrus Efficacy M. Ponater et al. 10.3390/aerospace8020042
- Simulated 2050 aviation radiative forcing from contrails and aerosols C. Chen & A. Gettelman 10.5194/acp-16-7317-2016
- Mapping global flying aircraft activities using Landsat 8 and cloud computing F. Zhao et al. 10.1016/j.isprsjprs.2021.12.003
- On the Life Cycle of Individual Contrails and Contrail Cirrus U. Schumann & A. Heymsfield 10.1175/AMSMONOGRAPHS-D-16-0005.1
- Simple Versus Complex Physical Representation of the Radiative Forcing From Linear Contrails: A Sensitivity Analysis R. Rodríguez De León et al. 10.1002/2017JD027861
4 citations as recorded by crossref.
- Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry P. Huszar et al. 10.5194/acp-13-10027-2013
- Persistent Contrails and Contrail Cirrus. Part I: Large-Eddy Simulations from Inception to Demise D. Lewellen et al. 10.1175/JAS-D-13-0316.1
- Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II G. Brasseur et al. 10.1175/BAMS-D-13-00089.1
- Reassessing properties and radiative forcing of contrail cirrus using a climate model L. Bock & U. Burkhardt 10.1002/2016JD025112
Saved (final revised paper)
Saved (final revised paper)
Latest update: 28 May 2023