Articles | Volume 13, issue 24
https://doi.org/10.5194/acp-13-12525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-12525-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulated radiative forcing from contrails and contrail cirrus
C.-C. Chen
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA
A. Gettelman
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA
Viewed
Total article views: 4,502 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,554 | 1,761 | 187 | 4,502 | 132 | 98 |
- HTML: 2,554
- PDF: 1,761
- XML: 187
- Total: 4,502
- BibTeX: 132
- EndNote: 98
Total article views: 3,497 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Dec 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,043 | 1,304 | 150 | 3,497 | 104 | 91 |
- HTML: 2,043
- PDF: 1,304
- XML: 150
- Total: 3,497
- BibTeX: 104
- EndNote: 91
Total article views: 1,005 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Apr 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
511 | 457 | 37 | 1,005 | 28 | 7 |
- HTML: 511
- PDF: 457
- XML: 37
- Total: 1,005
- BibTeX: 28
- EndNote: 7
Cited
35 citations as recorded by crossref.
- Impacts of multi-layer overlap on contrail radiative forcing I. Sanz-Morère et al. 10.5194/acp-21-1649-2021
- The climate impact of COVID-19-induced contrail changes A. Gettelman et al. 10.5194/acp-21-9405-2021
- Exploring the uncertainties in the aviation soot–cirrus effect M. Righi et al. 10.5194/acp-21-17267-2021
- Marginal climate and air quality costs of aviation emissions C. Grobler et al. 10.1088/1748-9326/ab4942
- Formation and radiative forcing of contrail cirrus B. Kärcher 10.1038/s41467-018-04068-0
- Uncertainties in mitigating aviation non-CO2 emissions for climate and air quality using hydrocarbon fuels D. Lee et al. 10.1039/D3EA00091E
- Reducing Uncertainty in Contrail Radiative Forcing Resulting from Uncertainty in Ice Crystal Properties I. Sanz-Morère et al. 10.1021/acs.estlett.0c00150
- Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model U. Schumann & B. Mayer 10.5194/acp-17-13833-2017
- Estimating the Effective Radiative Forcing of Contrail Cirrus M. Bickel et al. 10.1175/JCLI-D-19-0467.1
- The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018 D. Lee et al. 10.1016/j.atmosenv.2020.117834
- Climate impact of aircraft-induced cirrus assessed from satellite observations before and during COVID-19 J. Quaas et al. 10.1088/1748-9326/abf686
- Beyond Contrail Avoidance: Efficacy of Flight Altitude Changes to Minimise Contrail Climate Forcing R. Teoh et al. 10.3390/aerospace7090121
- Towards Determining the Contrail Cirrus Efficacy M. Ponater et al. 10.3390/aerospace8020042
- Mapping global flying aircraft activities using Landsat 8 and cloud computing F. Zhao et al. 10.1016/j.isprsjprs.2021.12.003
- Simple Versus Complex Physical Representation of the Radiative Forcing From Linear Contrails: A Sensitivity Analysis R. Rodríguez De León et al. 10.1002/2017JD027861
- Linear Contrails Detection, Tracking and Matching with Aircraft Using Geostationary Satellite and Air Traffic Data R. Chevallier et al. 10.3390/aerospace10070578
- Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions A. Bier et al. 10.1002/2017JD027011
- Detection flying aircraft from Landsat 8 OLI data F. Zhao et al. 10.1016/j.isprsjprs.2018.05.001
- Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation P. Verma & U. Burkhardt 10.5194/acp-22-8819-2022
- Reanalysis-driven simulations may overestimate persistent contrail formation by 100%–250% A. Agarwal et al. 10.1088/1748-9326/ac38d9
- Dehydration effects from contrails in a coupled contrail–climate model U. Schumann et al. 10.5194/acp-15-11179-2015
- Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions A. Bier & U. Burkhardt 10.1029/2018JD029155
- The impact of fossil jet fuel emissions at altitude on climate change: A life cycle assessment study of a long-haul flight at different time horizons T. Gaillot et al. 10.1016/j.atmosenv.2023.119983
- Cost and emissions pathways towards net-zero climate impacts in aviation L. Dray et al. 10.1038/s41558-022-01485-4
- Reduced ice number concentrations in contrails from low-aromatic biofuel blends T. Bräuer et al. 10.5194/acp-21-16817-2021
- Quantifying aviation’s contribution to global warming M. Klöwer et al. 10.1088/1748-9326/ac286e
- Properties of young contrails – a parametrisation based on large-eddy simulations S. Unterstrasser 10.5194/acp-16-2059-2016
- Aviation contrail climate effects in the North Atlantic from 2016 to 2021 R. Teoh et al. 10.5194/acp-22-10919-2022
- Impact of Parametrizing Microphysical Processes in the Jet and Vortex Phase on Contrail Cirrus Properties and Radiative Forcing A. Bier & U. Burkhardt 10.1029/2022JD036677
- Simulated 2050 aviation radiative forcing from contrails and aerosols C. Chen & A. Gettelman 10.5194/acp-16-7317-2016
- On the Life Cycle of Individual Contrails and Contrail Cirrus U. Schumann & A. Heymsfield 10.1175/AMSMONOGRAPHS-D-16-0005.1
- Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry P. Huszar et al. 10.5194/acp-13-10027-2013
- Persistent Contrails and Contrail Cirrus. Part I: Large-Eddy Simulations from Inception to Demise D. Lewellen et al. 10.1175/JAS-D-13-0316.1
- Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II G. Brasseur et al. 10.1175/BAMS-D-13-00089.1
- Reassessing properties and radiative forcing of contrail cirrus using a climate model L. Bock & U. Burkhardt 10.1002/2016JD025112
31 citations as recorded by crossref.
- Impacts of multi-layer overlap on contrail radiative forcing I. Sanz-Morère et al. 10.5194/acp-21-1649-2021
- The climate impact of COVID-19-induced contrail changes A. Gettelman et al. 10.5194/acp-21-9405-2021
- Exploring the uncertainties in the aviation soot–cirrus effect M. Righi et al. 10.5194/acp-21-17267-2021
- Marginal climate and air quality costs of aviation emissions C. Grobler et al. 10.1088/1748-9326/ab4942
- Formation and radiative forcing of contrail cirrus B. Kärcher 10.1038/s41467-018-04068-0
- Uncertainties in mitigating aviation non-CO2 emissions for climate and air quality using hydrocarbon fuels D. Lee et al. 10.1039/D3EA00091E
- Reducing Uncertainty in Contrail Radiative Forcing Resulting from Uncertainty in Ice Crystal Properties I. Sanz-Morère et al. 10.1021/acs.estlett.0c00150
- Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model U. Schumann & B. Mayer 10.5194/acp-17-13833-2017
- Estimating the Effective Radiative Forcing of Contrail Cirrus M. Bickel et al. 10.1175/JCLI-D-19-0467.1
- The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018 D. Lee et al. 10.1016/j.atmosenv.2020.117834
- Climate impact of aircraft-induced cirrus assessed from satellite observations before and during COVID-19 J. Quaas et al. 10.1088/1748-9326/abf686
- Beyond Contrail Avoidance: Efficacy of Flight Altitude Changes to Minimise Contrail Climate Forcing R. Teoh et al. 10.3390/aerospace7090121
- Towards Determining the Contrail Cirrus Efficacy M. Ponater et al. 10.3390/aerospace8020042
- Mapping global flying aircraft activities using Landsat 8 and cloud computing F. Zhao et al. 10.1016/j.isprsjprs.2021.12.003
- Simple Versus Complex Physical Representation of the Radiative Forcing From Linear Contrails: A Sensitivity Analysis R. Rodríguez De León et al. 10.1002/2017JD027861
- Linear Contrails Detection, Tracking and Matching with Aircraft Using Geostationary Satellite and Air Traffic Data R. Chevallier et al. 10.3390/aerospace10070578
- Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions A. Bier et al. 10.1002/2017JD027011
- Detection flying aircraft from Landsat 8 OLI data F. Zhao et al. 10.1016/j.isprsjprs.2018.05.001
- Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation P. Verma & U. Burkhardt 10.5194/acp-22-8819-2022
- Reanalysis-driven simulations may overestimate persistent contrail formation by 100%–250% A. Agarwal et al. 10.1088/1748-9326/ac38d9
- Dehydration effects from contrails in a coupled contrail–climate model U. Schumann et al. 10.5194/acp-15-11179-2015
- Variability in Contrail Ice Nucleation and Its Dependence on Soot Number Emissions A. Bier & U. Burkhardt 10.1029/2018JD029155
- The impact of fossil jet fuel emissions at altitude on climate change: A life cycle assessment study of a long-haul flight at different time horizons T. Gaillot et al. 10.1016/j.atmosenv.2023.119983
- Cost and emissions pathways towards net-zero climate impacts in aviation L. Dray et al. 10.1038/s41558-022-01485-4
- Reduced ice number concentrations in contrails from low-aromatic biofuel blends T. Bräuer et al. 10.5194/acp-21-16817-2021
- Quantifying aviation’s contribution to global warming M. Klöwer et al. 10.1088/1748-9326/ac286e
- Properties of young contrails – a parametrisation based on large-eddy simulations S. Unterstrasser 10.5194/acp-16-2059-2016
- Aviation contrail climate effects in the North Atlantic from 2016 to 2021 R. Teoh et al. 10.5194/acp-22-10919-2022
- Impact of Parametrizing Microphysical Processes in the Jet and Vortex Phase on Contrail Cirrus Properties and Radiative Forcing A. Bier & U. Burkhardt 10.1029/2022JD036677
- Simulated 2050 aviation radiative forcing from contrails and aerosols C. Chen & A. Gettelman 10.5194/acp-16-7317-2016
- On the Life Cycle of Individual Contrails and Contrail Cirrus U. Schumann & A. Heymsfield 10.1175/AMSMONOGRAPHS-D-16-0005.1
4 citations as recorded by crossref.
- Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry P. Huszar et al. 10.5194/acp-13-10027-2013
- Persistent Contrails and Contrail Cirrus. Part I: Large-Eddy Simulations from Inception to Demise D. Lewellen et al. 10.1175/JAS-D-13-0316.1
- Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II G. Brasseur et al. 10.1175/BAMS-D-13-00089.1
- Reassessing properties and radiative forcing of contrail cirrus using a climate model L. Bock & U. Burkhardt 10.1002/2016JD025112
Saved (final revised paper)
Saved (final revised paper)
Latest update: 09 Dec 2023