Articles | Volume 13, issue 23
https://doi.org/10.5194/acp-13-11905-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-11905-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The metastable HCl · 6H2O phase – IR spectroscopy, phase transitions and kinetic/thermodynamic properties in the range 170–205 K
S. Chiesa
Laboratoire de Pollution Atmosphérique et du Sol (LPAS), Station 6, LPAS/ISTE/ENAC, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
Groupe de Recherche en Bioénergie et Planification énergétique, ENAC, Swiss Federal Institute of Technology (EPFL), 1004 Lausanne, Switzerland
M. J. Rossi
Laboratoire de Pollution Atmosphérique et du Sol (LPAS), Station 6, LPAS/ISTE/ENAC, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
now at: Laboratorium für Atmosphärenchemie (LAC), OFLA008, Paul Scherrer Institut (PSI), 5232 Villigen PSI, Switzerland
Related authors
No articles found.
Christophe Delval and Michel J. Rossi
Atmos. Chem. Phys., 18, 15903–15919, https://doi.org/10.5194/acp-18-15903-2018, https://doi.org/10.5194/acp-18-15903-2018, 2018
Short summary
Short summary
Evaporation rates of H2O and HCl were observed from a thin film condensate at low temperature at an average HCl mole fraction of 10(−5)–10(−3) in order to probe the evaporative lifetime of ice particles of the upper troposphere and lower stratosphere. The results show a decrease in the H2O evaporation rate with increasing mass loss of the condensate under conditions where the saturation vapor pressure corresponded to pure ice. This supports gas–surface reactions of HCl-doped ice particles.
Ugo Molteni, Federico Bianchi, Felix Klein, Imad El Haddad, Carla Frege, Michel J. Rossi, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 1909–1921, https://doi.org/10.5194/acp-18-1909-2018, https://doi.org/10.5194/acp-18-1909-2018, 2018
Short summary
Short summary
Anthropogenic volatile organic compounds often dominate the urban atmosphere and consist to a large degree of aromatics. These compounds are already known as important precursors for the formation of secondary organic aerosol. This study shows how the oxidation of aromatics with an OH radical leads to subsequent autoxidation chain reactions forming highly oxygenated molecules. We hypothesize that these may contribute substantially to new particle formation events detected in urban areas.
Carla Frege, Federico Bianchi, Ugo Molteni, Jasmin Tröstl, Heikki Junninen, Stephan Henne, Mikko Sipilä, Erik Herrmann, Michel J. Rossi, Markku Kulmala, Christopher R. Hoyle, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 17, 2613–2629, https://doi.org/10.5194/acp-17-2613-2017, https://doi.org/10.5194/acp-17-2613-2017, 2017
Short summary
Short summary
We present measurements of the chemical composition of atmospheric ions at high altitude (3450 m a.s.l.) during a 9-month campaign. We detected remarkably high correlation between methanesulfonic acid (MSA) and SO5−. Halogenated species were also detected frequently at this continental location. New-particle formation events occurred via the condensation of highly oxygenated molecules (HOMs) at very low sulfuric acid concentration or, less frequently, due to ammonia–sulfuric acid clusters.
Riccardo Iannarelli and Michel J. Rossi
Atmos. Chem. Phys., 16, 11937–11960, https://doi.org/10.5194/acp-16-11937-2016, https://doi.org/10.5194/acp-16-11937-2016, 2016
Short summary
Short summary
Both adsorption and evaporation kinetics of water, nitric acid and hydrochloric acid on nitric acid hydrates were measured under upper tropospheric/lower stratospheric conditions. The evaporative lifetimes of "contaminated" ice clouds are important parameters for heterogeneous processing controlling polar ozone in the winter/spring season ("ozone hole"). We measured both the adsorption and evaporation kinetics, resulting in the corresponding vapor pressure as a validity check of the results.
R. Iannarelli and M. J. Rossi
Atmos. Chem. Phys., 14, 5183–5204, https://doi.org/10.5194/acp-14-5183-2014, https://doi.org/10.5194/acp-14-5183-2014, 2014
M. Ammann, R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington
Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, https://doi.org/10.5194/acp-13-8045-2013, 2013
Cited articles
Abbatt, J. P. D., Beyer, K. D., Fucaloro, A. F., McMahon, J. R., Wooldridge, P. J., Zhang, R., and Molina, M. J.: Interaction of HCl vapor with water ice: implications for the stratosphere, J. Geophys. Res., 97, 15819–15826, 1992.
Banham, S. F., Sodeau, J. R., Horn, A. B., McCoustra, M. R. S., and Chesters, M. A.: Adsorption and ionization of HCl on an ice surface, J. Vac. Sci. Technol. A, 14, 1620–1626, 1996.
Bergren, M. S., Schuh, D., Sceats, M. G., and Rice, S. A.: The OH stretching region infrared spectra of low density amorphous solid water and polycrystalline ice Ih, J. Phys. Chem., 69, 3477–3482, 1978.
Borrmann, S., Solomon, S., Dye, J.E., and Luo, B. P.: The potential of Cirrus Clouds for heterogeneous Chlorine Activation, Geophys. Res. Lett., 23, 2133–2136, 1996.
Bournel, F., Mangeney, C., Tronc, M., Laffon, C., and Parent, P.: Acidity of hydrogen chloride at the surface of low-temperature (40–150 K) water-ice films, Phys. Rev. B, 65, 201404, 2002.
Buch, V. and Devlin, J. P.: Spectra of dangling OH bonds in amorphous ice assignment to 2- and 3-coordinated surface molecules, J. Chem. Phys., 94, 4091–4092, 1991.
Chaix, L., van den Bergh, H., and Rossi, M. J.: Real-Time Kinetic Measurements of the Condensation and Evaporation of D2O on Ice at 140 < T/K < 220, J. Phys. Chem. A, 102, 10300–10309, 1998.
Delval, C. and Rossi, M. J.: The kinetics of condensation and evaporation of H2O from pure ice in the range 173–223 K: a quartz crystal microbalance study, Phys. Chem. Chem. Phys., 6, 4665–4676, 2004.
Delval, C. and Rossi, M. J.: Influence of monolayer amounts of HNO3 on the evaporation rate of H2O over ice in the range 179 to 208 K: A quartz crystal microbalance study, J. Phys. Chem. A, 109, 7151–7165, 2005.
Delval, C., Fluckiger, B., and Rossi, M. J.: The rate of water vapor evaporation from ice substrates in the presence of HCl and HBr: implications for the lifetime of atmospheric ice particles, Atmos. Chem. Phys., 3, 1131–1145, https://doi.org/10.5194/acp-3-1131-2003, 2003.
Delzeit, L., Rowland, B., and Devlin, J. P.: Infrared spectra of HCl complexed/ionized in amorphous hydrates and at ice surfaces in the 15–90 K range, J. Phys. Chem., 97, 10312–10318, 1993.
Flückiger, B., Thielmann, A., Gutzwiller, L., and Rossi, M. J.: Real time kinetics and thermochemistry of the uptake of HCl, HBr and HI on water ice in the temperature range 190 to 210 K, Ber. Bunsen. Phys. Chem., 102, 915–928, 1998.
Foster, K. L., Tolbert, M. A., and George, S. M.: Interaction of HCl with Ice: Investigation of the Predicted Trihydrate, Hexahydrate, and Monolayer Regimes, J. Phys. Chem. A, 101, 4979–4986, 1997.
Friedl, R. R., Goble, J. H., and Sander, S. P.: A Kinetics Study of the homogeneous and heterogeneous Components of the HCl + ClONO2 Reaction, Geophys. Res. Lett. 13, 1351–1354, 1986.
Graham, J. D. and Roberts, J. T.: Interaction of HCl with crystalline and amorphous ice: implications for the mechanism of ice-catalyzed reactions, Geophys. Res. Lett., 22, 251–254, 1995.
Graham, J. D. and Roberts, J. T.: Formation of HCl $\Radical$ 6H2O from ice and HCl under ultrahigh vacuum, Chemometr. Intell. Lab., 37, 139–148, 1997.
Hanson, D. R. and Mauersberger, K.: HCl / H2O Solid Phase Vapor Pressures and HCl Solubility in Ice, J. Phys. Chem., 94, 4700–4705, 1990.
Hanson, D. R. and Ravishankara, A. R.: Investigation of the Reactive and Nonreactive Processes involving ClONO2 and HCl on Water and Nitric Acid Doped Ice, J. Phys. Chem., 96, 2682–2691, 1992.
Haq, S., Harnett, J., and Hodgson, A.: Adsorption and solvation of HCl into ice surfaces, J. Phys. Chem. B, 106, 3950–3959, 2002.
Henson, B. F., Wilson, K. R., Robinson, J. M., Noble, C. A., Casson, J. L., and Worsnop, D. R.: Experimental isotherms of HCl and H2O ice under stratospheric conditions: Connections between bulk and interfacial thermodynamics, J. Chem. Phys., 121, 8486–8499, 2004.
Henson, B. F., Wilson, K. R., Robinson, J. M., Nobel, C. A., Casson, J. L., Voss, L. F., and Worsnop, D. R.: Nucleation of Bulk Phases in the HCl/H2O System, J. Phys. Chem. A, 111, 8635–8641, 2007.
Huthwelker, T., Malmström, M. E., Helleis, F., Moortgat, G. K., and Peter, T.: Kinetics of HCl Uptake on Ice at 190 and 203 K: Implications for the Microphysics of the Uptake Process, J. Phys. Chem. A, 108, 6302–6318, 2004.
Huthwelker, T., Ammann, M., and Peter, T.: The Uptake of Acidic Gases on Ice, Chem. Rev., 106, 1375–1444, 2006.
Hynes, R. G., Mössinger, J. C., and Cox, R. A.: The interaction of HCl with water-ice at tropospheric temperatures, Geophys. Res. Lett. 28, 2827–2830, 2001.
Hynes, R. G., Fernandez, M. A., and Cox, R. A.: Uptake of HNO3 on water-ice and coadsorption of HNO3 and HCl in the temperature range 210–235 K, J. Geophys. Res., 107, D244797, 2002.
Iannarelli, R. and Rossi, M. J.: H2O and HCl trace gas kinetics on crystalline and amorphous HCl hydrates in the range 170 to 205 K: the HCl / H2O phase diagram revisited, Atmos. Chem. Phys. Discuss., 13, 30765–30839, https://doi.org/10.5194/acpd-13-30765-2013, 2013.
Jancso, G., Pupezin, J., and Van Hook, W. A.: The vapor pressure of ice between +10−2 and −10+2°, J. Phys. Chem., 74, 2984–2989, 1970.
Koehler, B. G., McNeill, L., Middlebrook, A. M., and Tolbert, M. A.: Fourier transform infrared studies of the interaction of HCl with model polar stratospheric cloud films, J. Geophys. Res., 98, 10563–10571, 1993.
Lee, S.-H., Leard, D. C., Zhang, R., Molina, L. T., and Molina, M. J.: The HCl + ClONO2 reaction on various water ice surfaces, Chem. Phys. Lett. 315, 7–11, 1999.
Marti, J. and Mauersberger, K.: A survey and new measurements of ice vapor-pressure at temperatures between 170 and 250 K, Geophys. Res. Lett., 20, 363–366, 1993.
Martín-Llorente, B., Fernández-Torre, D., Herrero, V. J., Ortega, I. K., Escribano, R., and Maté, B.: Vibrational spectra of crystalline hydrates of atmospheric relevance: Bands of hydrated protons, Chem. Phys. Lett., 427, 300–304, 2006.
McNeill, V. F., Loerting, T., Geiger, F. M., Trout, B. L., and Molina, M. J.: Hydrogen chloride-induced surface disordering on ice, P. Natl. Acad. Sci., 103, 9422–9427, 2006.
McNeill, V. F., Geiger, F. M., Loerting, T., Trout, B. L., Molina, L. T., and Molina, M. J., Interaction of Hydrogen Chloride with Ice Surfaces: The Effects of Grain Size, Surface Roughness, and Surface Disorder, J. Phys. Chem. A, 111, 6274–6284, 2007.
Molina, L. T., Molina, M. J., Stachnik, R. A., and Tom, R. D.: An Upper Limit to the Rate of the HCl + ClONO2 Reaction J. Phys. Chem., 89, 3779–3781, 1985.
Molina, M. J.: The probable role of stratospheric "ice" clouds: heterogeneous chemistry and the "ozone hole", in The Chemistry of the atmosphere: its impact on global change, IUPAC Chemrawn VII Conference, Blackwell Scientific Publications, Boston, chapter 3, 27–38, 1994.
Molina, M. J., Tso, T. L., Molina, L. T., and Wang, F. C. Y.: Antarctic Stratospheric Chemistry of Chlorine Nitrate, Hydrogen Chloride and Ice: Release of Active Chlorine, Science, 238, 1253–1257, 1987.
Oppliger, R., Allanic A., and Rossi, M. J.: Real-Time Kinetics of the Uptake of ClONO2 on Ice and in the Presence of HCl in the Temperature Range 160 $\le $ T/K $\le $ 200, J. Phys. Chem. A, 101, 1903–1911, 1997.
Ortega, I. K., Escribano, R., Fernández-Torre, D., Herrero, V. J., Maté, B., and Moreno, M. A.: The HCl hexahydrate : RAIR spectra and theoretical investigation, Chem. Phys. Lett., 396, 335–340, 2004.
Ortega, I. K., Escribano, R., Herrero, V. J., Maté, B., and Moreno, M. A.: The structure and vibrational frequencies of crystalline HCl trihydrate, J. Mol. Struct., 742, 147–152, 2005.
Ortega, I. K., Escribano, R., Fernández-Torre, D., Herrero, V. J., Maté, B., and Moreno, M. A.: Exposure of nitric acid trihydrate crystals to HCl: a spectroscopic study, J. Geophys. Res., 111, D13206, https://doi.org/10.1029/2005JD006931, 2006.
Parent, P. and Laffon, C.: Adsorption of HCl on the water ice surface studied by x-ray absorption spectrsocopy, J. Phys. Chem. B, 109, 1547–1553, 2005.
Pratte, P., van den Bergh, H., and Rossi, M. J.: The kinetics of H2O vapor condensation and evaporation on different types of ice in the range 130–210 K, J. Phys. Chem. A, 110, 3042–3058, 2006.
Ritzhaupt, G. and Devlin, J. P.: Infrared spectra of nitric and hydrochloric acid hydrate thin films, J. Phys. Chem., 95, 90–95, 1991.
Sadtchenko, V., Giese, C. F., and Gentry, W. R.: Interaction of hydrogen chloride with thin ice films: the effect of ice morphology and evidence for unique surface species on crystalline vapor-deposited ice, J. Phys. Chem. B, 104, 9421–9429, 2000.
Solomon, S.: Progress towards a quantitative understanding of Antarctic ozone depletion, Nature, 347, 347–354, 1990.
Solomon, S., Borrmann, S., Garcia, R. R., Portmann, R., Thomason, L., Poole, L. R., Winker, D., and McCormick, M. P.: Heterogeneous Chlorine Chemistry in the Tropopause Region, J. Geophys. Res.-Atmos., 102, 21411–21429, 1997.
Thibert, E. and Dominé, F.: Thermodynamics and kinetics of the solid solution of HCl in ice, J. Phys. Chem. B, 101, 3554–3565, 1997.
Toon, O. B., Tolbert, M. A., Koehler, B. G., Middlebrook, A. M., and Jordan, J.: Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates, J. Geophys. Res., 99, 631–654, 1994.
Uras-Aytemiz, N., Joyce, C., and Devlin, J. P.: Kinetics of ice particle conversion to the hydrates of HCl, J. Phys. Chem. A, 105, 10497–10500, 2001.
Vuillard, G.: Contribution A L'Etude de l'Etat Vitreux Et De La Cristallisation Des Solutions Aqueuses, Ann. Chim. 13, 233–297, 1957.
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S., Churney, K. L., and Nuttall, R. L.: The NBS tables of chemical thermodynamic properties, Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11, Suppl. No. 2, 1982.
Wooldridge, P. J., Zhang, R., and Molina, M. J.: Phase Equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds, J. Geophys. Res. 100, 1389–1396, 1995.
Xueref, I. and Dominé, F.: FTIR spectroscopic studies of the simultaneous condensation of HCl and H2O at 190 K – Atmospheric applications, Atmos. Chem. Phys., 3, 1779–1789, https://doi.org/10.5194/acp-3-1779-2003, 2003.
Zondlo, M. A., Hudson, P. K., Prenni, A. J., and Tolbert, M. A.: Chemistry and microphysics of polar stratospheric clouds and cirrus clouds, Annu. Rev. Phys. Chem., 51, 473–499, 2000.
Altmetrics
Final-revised paper
Preprint