Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 12, issue 14
Atmos. Chem. Phys., 12, 6555–6563, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 6555–6563, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Jul 2012

Research article | 25 Jul 2012

Global distribution and climate forcing of marine organic aerosol – Part 2: Effects on cloud properties and radiative forcing

B. Gantt1, J. Xu1,2, N. Meskhidze1, Y. Zhang1, A. Nenes3,4, S. J. Ghan5, X. Liu5, R. Easter5, and R. Zaveri5 B. Gantt et al.
  • 1Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
  • 2Chinese Research Academy of Environment Sciences, No. 8 Dayangfang, Beiyuan, Chaoyang District, Beijing 100012, China
  • 3School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
  • 4School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
  • 5Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA

Abstract. A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 W m−2 (7%) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level in-cloud droplet number concentration and liquid water path of 1.3 cm−3 (1.5%) and 0.22 g m−2 (0.5%), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Publications Copernicus
Final-revised paper