Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 12, issue 12
Atmos. Chem. Phys., 12, 5563–5581, 2012
https://doi.org/10.5194/acp-12-5563-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 5563–5581, 2012
https://doi.org/10.5194/acp-12-5563-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Jun 2012

Research article | 26 Jun 2012

Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties

X. Ma, F. Yu, and G. Luo X. Ma et al.
  • Atmospheric Sciences Research Center, State University of New York, 251 Fuller Road, Albany, New York 12203, USA

Abstract. Aerosol direct radiative forcing (DRF) plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.). The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 0.05° (5600 m) resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC) and primary organic carbon (POC), the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA) for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2, depending on assumptions regarding the mixing state, size and density of particles.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint