Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 12, issue 7
Atmos. Chem. Phys., 12, 3165–3179, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 12, 3165–3179, 2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Apr 2012

Research article | 03 Apr 2012

Particle mass yield from β-caryophyllene ozonolysis

Q. Chen1, Y. L. Li2,1, K. A. McKinney3, M. Kuwata1, and S. T. Martin4,1 Q. Chen et al.
  • 1School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
  • 2Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China
  • 3Department of Chemistry, Amherst College, Amherst, Massachusetts, USA
  • 4Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA

Abstract. The influence of second-generation products on the particle mass yield of β-caryophyllene ozonolysis was systematically tested and quantified. The approach was to vary the relative concentrations of first- and second-generation products by adjusting the concentration of ozone while observing changes in particle mass yield. For all wall-loss corrected organic particle mass concentrations Morg of this study (0.5 < Morg < 230 μg m−3), the data show that the particle-phase organic material was composed for the most part of second-generation products. For 0.5< Morg < 10 μg m−3, a range which overlaps with atmospheric concentrations, the particle mass yield was 10 to 20% and was not sensitive to ozone exposure, implying that the constituent molecules were rapidly produced at all investigated ozone exposures. In contrast, for Morg > 10 μg m−3 the particle mass yield increased to as high as 70% for the ultimate yield corresponding to the greatest ozone exposures. These differing dependencies on ozone exposure under different regimes of Morg are explained by a combination of the ozonolysis lifetimes of the first-generation products and the volatility distribution of the resulting second-generation products. First-generation products that have short lifetimes produce low-volatility second-generation products whereas first-generation products that have long lifetimes produce high-volatility second-generation products. The ultimate particle mass yield was defined by mass-based stoichiometric yields αi of α0 = 0.17 ± 0.05, α1 = 0.11 ± 0.17, and α2 = 1.03 ± 0.30 for corresponding saturation concentrations of 1, 10, and 100 μg m−3. Terms α0 and α1 had low sensitivity to the investigated range of ozone exposure whereas term α2 increased from 0.32 ± 0.13 to 1.03 ± 0.30 as the ozone exposure was increased. These findings potentially allow for simplified yet accurate parameterizations in air quality and climate models that seek to represent the ozonolysis particle mass yields of certain classes of biogenic compounds.

Publications Copernicus
Final-revised paper