Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 11, issue 16
Atmos. Chem. Phys., 11, 8459–8469, 2011
https://doi.org/10.5194/acp-11-8459-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 11, 8459–8469, 2011
https://doi.org/10.5194/acp-11-8459-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Aug 2011

Research article | 19 Aug 2011

Minor effect of physical size sorting on iron solubility of transported mineral dust

Z. B. Shi1,*, M. T. Woodhouse1, K. S. Carslaw1, M. D. Krom1, G. W. Mann1,2, A. R. Baker3, I. Savov1, G. R. Fones4, B. Brooks1, N. Drake5, T. D. Jickells3, and L. G. Benning1 Z. B. Shi et al.
  • 1School of Earth and Environment, University of Leeds, Leeds, UK
  • 2National Centre for Atmospheric Science (NCAS), University of Leeds, UK
  • 3School of Environmental Sciences, University of East Anglia, Norwich, UK
  • 4School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
  • 5Department of Geography, King's College London, London, UK
  • *now at: School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Abstract. Observations show that the fractional solubility of Fe (FS-Fe, percentage of dissolved to total Fe) in dust aerosol increases considerably from 0.1 % in regions of high dust mass concentration to 80 % in remote regions where concentrations are low. Here, we combined laboratory geochemical measurements with global aerosol model simulations to test the hypothesis that the increase in FS-Fe is due to physical size sorting during transport. We determined the FS-Fe and fractional solubility of Al (FS-Al) in size-fractionated dust generated from two representative soil samples collected from known Saharan dust source regions using a customized dust re-suspension and collection system. The results show that the FS-Fe is size-dependent and ranges from 0.1–0.3 % in the coarse size fractions (>1 μm) to ~0.2–0.8 % in the fine size fractions (<1 μm). The FS-Al shows a similar size distribution to that of the FS-Fe. The size-resolved FS-Fe data were then combined with simulated dust mass concentration and size distribution data from a global aerosol model, GLOMAP, to calculate the FS-Fe of dust aerosol over the tropical and subtropical North Atlantic Ocean. We find that the calculated FS-Fe in the dust aerosol increases systematically from ~0.1 % at high dust mass concentrations (e.g., >100 μg m−3) to ~0.2 % at low concentrations (<100 μg m–3) due to physical size sorting (i.e., particle gravitational settling). These values are one to two orders of magnitude smaller than those observed on cruises across the tropical and sub-tropical North Atlantic Ocean under an important pathway of Saharan dust plumes for similar dust mass concentrations. Even when the FS-Fe of sub-micrometer size fractions (0.18–0.32 μm, 0.32–0.56 μm, and 0.56–1.0 μm) in the model is increased by a factor of 10 over the measured values, the calculated FS-Fe of the dust is still more than an order of magnitude lower than that measured in the field. Therefore, the physical sorting of dust particles alone is unlikely to be an important factor in the observed inverse relationship between the FS-Fe and FS-Al and the atmospheric mineral dust mass concentrations. The results suggest that processes such as chemical reactions and/or mixing with combustion particles are the main mechanisms to cause the increased FS-Fe in long-range transported dust aerosols.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint