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Abstract. Observations show that the fractional solubil-
ity of Fe (FS-Fe, percentage of dissolved to total Fe) in
dust aerosol increases considerably from 0.1 % in regions
of high dust mass concentration to 80 % in remote regions
where concentrations are low. Here, we combined labora-
tory geochemical measurements with global aerosol model
simulations to test the hypothesis that the increase in FS-Fe
is due to physical size sorting during transport. We deter-
mined the FS-Fe and fractional solubility of Al (FS-Al) in
size-fractionated dust generated from two representative soil
samples collected from known Saharan dust source regions
using a customized dust re-suspension and collection sys-
tem. The results show that the FS-Fe is size-dependent and
ranges from 0.1–0.3 % in the coarse size fractions (>1 µm)
to ∼0.2–0.8 % in the fine size fractions (<1 µm). The FS-
Al shows a similar size distribution to that of the FS-Fe. The
size-resolved FS-Fe data were then combined with simulated
dust mass concentration and size distribution data from a
global aerosol model, GLOMAP, to calculate the FS-Fe of
dust aerosol over the tropical and subtropical North Atlantic
Ocean. We find that the calculated FS-Fe in the dust aerosol
increases systematically from∼0.1 % at high dust mass con-
centrations (e.g.,>100 µg m−3) to ∼0.2 % at low concentra-
tions (<100 µg m−3) due to physical size sorting (i.e., parti-
cle gravitational settling). These values are one to two or-
ders of magnitude smaller than those observed on cruises
across the tropical and sub-tropical North Atlantic Ocean un-
der an important pathway of Saharan dust plumes for simi-
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lar dust mass concentrations. Even when the FS-Fe of sub-
micrometer size fractions (0.18–0.32 µm, 0.32–0.56 µm, and
0.56–1.0 µm) in the model is increased by a factor of 10 over
the measured values, the calculated FS-Fe of the dust is still
more than an order of magnitude lower than that measured
in the field. Therefore, the physical sorting of dust parti-
cles alone is unlikely to be an important factor in the ob-
served inverse relationship between the FS-Fe and FS-Al and
the atmospheric mineral dust mass concentrations. The re-
sults suggest that processes such as chemical reactions and/or
mixing with combustion particles are the main mechanisms
to cause the increased FS-Fe in long-range transported dust
aerosols.

1 Introduction

One of the most significant recent advances in oceanography
was the demonstration of the importance of Fe supply in reg-
ulating key biogeochemical interactions and feedbacks be-
tween the ocean and atmosphere (Martin et al., 1990; Turner
et al., 1996; Boyd et al., 2007, 2010) together with the recog-
nition that atmospheric mineral aerosol (dust) is a primary
external source of Fe found in surface waters (Martin, 1990;
Duce et al., 1991; Jickells and Spokes, 2001; Jickells et al.,
2005; Rikenberg et al., 2008; Guieu et al., 2010; Theodosi et
al., 2010). The supply of bioavailable Fe to surface waters
has been shown to be important in the regulation of primary
productivity and nitrogen fixation rates, resulting in altered
carbon uptake and biogenic air-sea gas fluxes, which have
feedback effects on climate and dust production (Jickells
et al., 2005; Mahowald et al., 2005; Falkowski et al., 1998;
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Ridgwell, 2009; Meskhidze et al., 2005; Moore et al., 2009).
Furthermore, increased dust Fe supply to the global ocean
was suggested to be an important factor in reducing atmo-
spheric CO2 during the last glacial maximum (Sigman and
Boyle, 2000; R̈othlisberger et al., 2004).

While the importance of atmospheric dust in the Fe supply
to the oceans is now recognized, the quantification of the flux
of bioavailable Fe from mineral dust remains one of the ma-
jor uncertainties in the global Fe cycle (Jickells et al., 2005;
Mahowald et al., 2005). Since the Fe bioavailability cannot
be directly measured chemically, it is generally assumed that
the dissolved Fe in the dust aerosol is bioavailable. The flux
of the dissolved Fe can be calculated as

Fluxdissolved Fe= Fluxdust×FeT×FS-Fe, (1)

in which FeT is the total Fe content and FS-Fe is the frac-
tional solubility of Fe (percentage of dissolved to FeT).
While the estimated total flux of dust to the ocean and FeT in
the dust are less uncertain (Jickells et al., 2005; Mahowald et
al., 2005; Guieu et al., 2002), the FS-Fe term varies consider-
ably from∼0.1 % to more than 80 %, with higher solubility
values generally observed when dust mass concentrations are
low both over remote parts of the oceans and over polluted
areas (e.g., Hand et al., 2004; Chen and Siefert, 2004; Baker
and Jickells, 2006; Sedwick et al., 2007; Mahowald et al.,
2005; Kumar et al., 2010; Erel et al., 1993; Sedlak et al.,
1997; Theodosi et al., 2010). Baker and Jickells (2006) and
Measures et al. (2010) also found a similar inverse relation-
ship between dust mass concentration and fractional solubil-
ity of Al (FS-Al) in aerosol samples.

Several hypotheses have been proposed to explain the sys-
tematic trends in Fe and Al solubility with dust mass concen-
trations. One hypothesis is the physical sorting idea proposed
by Baker and Jickells (2006). They suggested that gravita-
tional settling of coarse dust particles (having lower Fe sol-
ubility) across the Atlantic away from the Saharan source
could lead to the observed inverse relationship. They argued
that the greater solubility at lower dust mass concentrations
could be due to a larger surface area to volume ratio of the
finer dust particles.

Motivated by the “physical sorting hypothesis”, two
groups have investigated the size distribution of Fe solubility
in atmospheric aerosol. Ooki et al. (2009) reported a higher
Fe solubility in finer aerosol collected in Japan during a dust
event. In contrast, Buck et al. (2010a) did not find an in-
creasing trend in Fe solubility with the size of aerosol over
the northwest Pacific Ocean. Therefore, the effect of physical
size sorting on the FS-Fe is still not clear. A major reason is
that the dust aerosol collected on cruises or at ground stations
may have been subjected to other processes such as mixing
with anthropogenic particles and chemical processing which
may also alter the FS-Fe (e.g., Baker and Croot, 2010; Sed-
wick et al., 2007; Chuang et al., 2005; Hsu et al., 2010; Buck
et al., 2010b; Measures et al., 2010).

In this study, we have investigated the “physical sorting
hypothesis” by combining laboratory experiments of dust
precursors with global aerosol simulations. We firstly sepa-
rated soil samples from two well-known Saharan dust source
regions, which have not been atmospherically processed, into
10 aerodynamic diameter (D) size ranges (0–100 µm) and
measured the FS-Fe and FS-Al of each size fraction. The
measured FS-Fe data were combined with outputs from a
global aerosol model to evaluate how the process of physical
size sorting alone would affect FS-Fe of dust aerosol. The re-
sults were then compared with field data to determine the rel-
ative importance of physical sorting to explain the observed
increase in FS-Fe with decreasing dust mass concentration.

2 Methodology

2.1 Sample description

The first sample used was a palaeosol from a region of the
Western Sahara that has been shown to be a major source of
dust by TOMS (Prospero et al., 2002). The second sample
was collected from a river channel that drained the Tibesti
Mountains in south Libya during the early Holocene humid
period and now forms a flash flood water course that is sub-
ject to deflation. The area where this sample was collected
is also known to be a major Saharan dust source (Prospero et
al., 2002; Schepanski et al., 2007). The dithionite Fe (crys-
talline Fe(III) oxides, mainly goethite and hematite, which
can be extracted by citrate buffered dithionite solution; Shi
et al. (2011a, b)) to total Fe ratio, which is a major parame-
ter for Fe mineralogical compositions in the dust (Formenti
et al., 2010) and is dependent on the degree of chemical
weathering of the source materials (Shi et al., 2011a), in the
D < 20 µm size fractions of the Western Sahara and Tibesti
samples were 0.33 and 0.38, respectively. These are close to
ratios reported in airborne Saharan dust, which is usually be-
tween 0.3–0.4 (Lazaro et al., 2008; Lafon et al., 2004; For-
menti et al., 2008). This comparison suggests that the Fe
mineralogical compositions of the soil samples are similar
to that of the airborne Saharan dust. Therefore, we suggest
that the soil samples used in this study are representative of
the source materials of atmospheric Saharan dust (Shi et al.,
2011a, b), before they are affected by atmospheric process-
ing.

2.2 Dust size separation

A Dust Tower (X78502, Grimm Aerosol Technik, Germany)
was used to re-suspend the Saharan soil samples (Fig. 1).
A compressed air supply driving the dust tower was ultra-
cleaned by three Whatman In-Line Vacuum Protection Fil-
ters (WZ-29708-00 Activated Carbon, WZ-29708-02 Desic-
cant, and WZ-29708-04 Molecular Sieve) and then a HEPA
filter. The ultra-clean air was injected into the bottom of
the dust tower at 10 l min−1 to create a turbulent circulation
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Fig. 1 Sketch diagram of the particle re-suspension and collection system 

  Fig. 1. Sketch diagram of the particle re-suspension and collection
system.

within the main body of the tower. A sample was drawn out
of this region via sample lines at the tower base while the
soil sample to be re-suspended was introduced by placing it
into a holding chamber then exposing it to short (approxi-
mately 1 s) periods of compressed air, thus “blowing” it into
the main body of the chamber.

Size separation of the dust sample was performed us-
ing an 8-stage Micro Orifice Uniform Deposition Im-
pactor (MOUDI 100, MSP Corporation, USA) which has a
30 l min−1 sample flow. This 30 l min−1 cannot be drawn in
entirely from the dust tower as the flow into the dust tower is
only 10 l min−1 hence it was made up of a∼9 l min−1 flow
drawn from the tower with the remainder being made up of
HEPA filter-cleaned lab air: mixing of these two lines oc-
curred in the plenum (dilution) chamber immediately preced-
ing the MOUDI.

Before sample re-suspension and size separation were per-
formed, the dust tower was flushed with cleaned compressed
air for half an hour in order to ensure an initial particle
free environment within the tower. A Condensation Parti-
cle Counter (CPC, TSI 3025 A) measuring particle concen-
trations forD > 6 nm temporarily replaced the MOUDI and
when the particle concentration measured by this instrument
was zero the system was considered clean.

An initial set of “treated blank filters” were collected with
the MOUDI. The duration of the blank sample collection was
2.5 h (without soil sample being introduced). After treated
blank filter collection, the CPC was reconnected and zero
particle concentration confirmed. The soil sample was then
placed into the sample injector and introduced into the main
body of the dust tower. In order to maintain a sufficient dust
loading a dust sample was injected automatically every 8 s.
Dust particles were collected on Teflon filters, the cutoff di-
ameter for stages 0 to 8 of the MOUDI were 18 µm, 10 µm,
5.6 µm, 3.2 µm, 1.8 µm, 1 µm, 0.56 µm, 0.32 µm, and 0.18 µm
respectively: a final output filter collected particles less than
0.18 µm.

2.3 Dissolved Fe and Al extraction, sample digestion,
and trace metal analyses

The subsequent handling of dissolved Fe and Al extractions
was carried out using trace metal clean techniques in a Class
100 laboratory. Each filter sample or treated blank filter was
cut in half with acid-washed, ceramic-bladed scissors. One
part was used for extractions with the filter treated with a
10 ml ammonium acetate solution buffered at pH 4.7 for∼2 h
(as detailed in Baker and Jickells, 2006). Subsequently, the
solution was filtered (0.2 µm, Teflon syringe filter) and acidi-
fied with ultra-pure concentrated HNO3 to 0.4 % v/v HNO3.
Ultrapure ammonia solution (TraceSELECT) and double-
distilled acetic acid were used to make the ammonium ac-
etate solution. Once prepared, the solutions were stored in a
refrigerator until the analysis was performed.

The other half of the filter was digested in an ultra-clean
Teflon bomb with a mixture of ultrapure HF and double dis-
tilled HNO3 (3:1) acid at∼120◦C for 24 h. The HF/HNO3
mix was then evaporated at∼90◦C. The dry residue was
re-digested in concentrated and double-distilled HNO3 at
∼90◦C in the Teflon bomb for∼15 h and evaporated to dry-
ness. The residue was treated with concentrated and double
distilled HCl, again in the Teflon bomb, for∼15 h and evapo-
rated at∼120◦C to complete dryness. The final residue was
dissolved in 1 M HNO3 (diluted from double-distilled con-
centrated HNO3 with ultrapure 18M� H2O) at ∼80◦C for
∼15 h. All sample digestions were performed in the Univer-
sity of Leeds Geochronology (TIMS) laboratory in clean and
dedicated fume hoods.

The elemental concentrations of both Al and Fe in the
dissolved and total phases were measured using an Induc-
tively Coupled Plasma-Mass Spectrometer (ICP-MS). The
analysis was undertaken at the University of Portsmouth in
the ISO9001 accredited analytical facilities using an Agilent
7500ce ICP-MS and an integrated auto-sampler (I-AS). The
7500ce uses an octopole reaction system to eliminate any
spectral interference (Planquette et al., 2009). The reaction
system can be run in two modes; reaction mode using hydro-
gen gas which was used for the analysis of Fe56 and collision
mode using helium gas which was used for the analysis of
Al27. The use of the octopole reaction system eliminates any
polyatomic spectral interferences and the need for interfer-
ence corrections.

A dilution factor of 2–100 (depending on dissolved or to-
tal) was applied to each sample. The data processing pro-
cedure used the Agilent software Chemstation and included
linear drift correction, blank subtraction, calibration, and a
dilution correction. For this work, mixed standards were pre-
pared in the range of 0.1 to 500 µg l−1 in 2 % nitric & 0.5 %
hydrochloric solution. An internal standard of 20 µg l−1 Rh
(stock solution of 400 µg l−1 Rh with twenty fold online di-
lution) was used to determine any variation in the intensity
of the signal. This correction is made automatically by the
software. The instrument detection limits were 0.05 and
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Table 1. Average concentration and standard deviation of the Fe and Al concentrations (unit: µg ł−1) in the extraction solutions (ammonium
acetate and 1 M HNO3), new filter blanks, and “treated filter blanks” measured using ICP-MS.

Average± standard deviation Number of replicates

Dissolved Fe Total Fe Dissolved Al Total Al

Solution 0.7± 0.3 1.9± 0.6 1.5± 1.0 6.4± 0.3 4
New filter 0.7± 0.3 92± 19 1.2± 1.2 29± 7 6
Treated filter 0.7± 0.5 115± 17 0.7± 0.4 33± 17 10

0.02 µg l−1 for Al and Fe, respectively. FeT was also mea-
sured by the ferrozine method (Viollier et al., 2000). There
was less than 10 % difference in the measured FeT concen-
trations by the ferrozine method and the ICP-MS. The data
presented here is that from the ICP-MS. The precision of
the ferrozine method was±1.2 % (1σ , n = 6) (Shi et al.,
2011a), while the precision of the ICP-MS Fe technique
was ±2.3 % (1σ , n = 6) using the CRM SLRS-4. In ad-
dition, to verify the efficacy of the total trace metal diges-
tion, the FeT in the Tibesti-PM20 and Western Sahara-PM20
samples was compared with total Fe determined by X-ray
Fluorescence (XRF) (Shi et al., 2011b). FeT in these two
samples was 4.6 % and 4.4 %, similar to 4.8 % and 4.7 %
measured by XRF (Shi et al., 2011a, b). To test the blank
trace metal concentrations, six new blank filters (different
from the aforementioned “treated blank filters”) were treated
following the same procedure as the other blanks and sam-
ples. Fe and Al concentrations were 0.7± 0.3 µg l−1(1σ ,
n = 4) and 1.5±1.0 µg l−1 (1σ , n = 4) in the ammonium ac-
etate solution used for extraction, 0.7±0.3 µg l−1 (1σ , n = 6)
and 1.2± 1.2 µg l−1 (1σ , n = 6) in the new blank filters,
and 0.7±0.5 µg l−1 (1σ , n = 10) and 0.7±0.4 µg l−1 (1σ ,
n = 10) in the “treated blank filters” (Table 1). The aver-
age dissolved Fe and Al concentrations in the “treated blank
filters” were similar to those of the new blank filters and
the ammonium acetate extract, suggesting that there were no
contaminating particles in the dust-generation system.

The Fe and Al concentrations were 1.9±0.6 µg l−1 (1σ ,
n = 4) and 6.4±0.3 µg l−1 (1σ , n = 4) in the 1M HNO3 used
for digestion, 92± 19 µg l−1 (1σ , n = 6) and 29± 7 µg l−1

(1σ , n = 6) in the new blank filters, and 115±17 µg l−1(1σ ,
n = 10) and 33±17 µg l−1 (1σ , n = 10) in the “treated blank
filters” (Table 1). Therefore, there is only a slight increase in
the FeT concentrations in the treated blank filters, which is
probably due to the sample digestion processes involved (re-
peated evaporation and digestion). The average blank Fe and
Al concentrations were subtracted from the measured values
in the sample solutions. Fractional Fe and Al solubilities (FS-
Fe and FS-Al) were calculated as the percentage of dissolved
to total Fe or Al, respectively.

2.4 Model description

The Global Model of Aerosol Processes (GLOMAP,
Spracklen et al., 2005; Manktelow et al., 2007, 2010;
Merikanto et al., 2010) is a detailed size-resolving aerosol
microphysics model, running within the TOMCAT chemical
transport model (Chipperfield, 2006). The model is driven
by European Centre for Medium-range Weather Forecasts
ERA-40 reanalysis meteorology (Uppala et al., 2005). The
version of GLOMAP used here, known as GLOMAP-bin,
has a sectional representation of the aerosol size distribu-
tion with 20 bins, and contains emissions of dust, sea-spray,
sulphur species, and elemental and organic carbon. Dust
is carried in the largest 12 bins (diameter from∼0.1 µm to
>10 µm). The microphysical processes parameterized in the
model are nucleation, condensation, coagulation, aqueous-
phase oxidation, and dry and wet deposition. In the simula-
tions presented here, AeroCom daily varying dust emissions
are prescribed (Dentener et al., 2006). The dust is assumed
to be non-hygroscopic at emission but becomes hygroscopic
through coagulation with other water-soluble aerosol and by
uptake of condensable vapours (e.g. sulphuric acid). Only
the hygroscopic dust particles are removed by wet scaveng-
ing processes, while both hygroscopic and non-hygroscopic
particles are dry deposited. Sedimentation of dust particles is
calculated separately for each of the 12 size classes, assum-
ing a density of 2650 kg m−3. The sedimentation and dry de-
position scheme is that of Zhang et al. (2001), and accounts
for particle size, surface type and wind speed effects.

In order to assess how FS-Fe of dust aerosol evolves as
a result of physical processing (i.e. the preferential removal
of larger dust particles), the modelled size-resolved mass
concentrations from GLOMAP-bin were combined with the
measured FS-Fe data. The model output was ‘sampled’ from
an area over the tropical to subtropical North Atlantic ocean,
spanning 0◦ W to 85◦ W, and 0◦ N to 32◦ N, corresponding
to a major dust pathway from the Sahara. A model-based
estimate of FS-Fe was derived assuming an FeT of 4.5 %,
which is the average of the Western Sahara and Tibesti sam-
ples. The FeT used here is slightly higher than those used
in other modelling studies (Hand et al., 2004; Meskhidze
et al., 2005; Fan et al., 2006; Solmon et al., 2009; Ito and
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Table 2. As measured dissolved Fe (D-Fe), dissolved Al (D-Al), total Fe (FeT), and total Al (AlT) concentrations (unit: µg l−1), and frac-
tional Fe solubility (FS-Fe) and fractional Al solubility (FS-Al) in the “treated blank filters”, Western Sahara and Tibesti samples measured
using ICP-MS.

Treated blank filter Western Sahara Tibesti

size, µm D-Fe FeT D-Al AlT D-Fe FeT D-Al AlT FS-Fe FS-Al FeT/AlT D-Fe FeT D-Al AlT FS-Fe FS-Al FeT/AlT

0.32–0.18 0.4 107 0.7 24 3.8 533 13.3 914.6 0.80 1.42 0.58 3.7 890 15.1 1707 0.42 0.86 0.52
0.56–0.32 0.7 122 0.8 41 18.8 4474 101.4 10632 0.42 0.95 0.42 10.5 3254 54.4 7488 0.31 0.72 0.43
1.0–0.56 1.2 97 0.2 22 40.1 17572 341.8 36740 0.22 0.93 0.48 13.2 5003 91.2 11926 0.24 0.76 0.42
1.8–1.0 0.3 108 0.4 33 65.0 27980 450.0 59160 0.23 0.76 0.47 14.9 7636 118.1 17982 0.19 0.66 0.42
3.2–1.8 0.5 123 0.7 28 42.0 41040 557.0 86260 0.10 0.65 0.48 12.0 5666 77.2 12756 0.21 0.60 0.44
5.6–3.2 0.9 139 0.2 25 37.4 34960 437.4 73840 0.10 0.59 0.47 4.2 1270 18.0 2458 0.29 0.73 0.52
10–5.6 1.8 112 0.4 34 13.8 6870 90.6 15900 0.18 0.57 0.43 <DL <DL <DL <DL <DL <DL <DL
18–10 0.3 98 0.8 25 6.2 2868 31.2 5452 0.21 0.56 0.53 <DL <DL <DL <DL <DL <DL <DL
> 18 0.3 98 0.8 24 11.4 5948 65.5 13916 0.19 0.47 0.43 <DL <DL <DL <DL <DL <DL <DL
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Fig. 2 Fractional Fe solubility (FS-Fe) of size-fractionated dust generated from the 

Western Sahara and Tibesti samples.  
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Fig. 2. Fractional Fe solubility (FS-Fe) of size-fractionated dust
generated from the Western Sahara and Tibesti samples.

Feng, 2010). The size-resolved FS-Fe data are mapped on
to the size ranges of the 12 GLOMAP dust bins using linear
interpolation. FS-Fe of dust aerosol (across the whole size
range) in each gridbox was then calculated by multiplying
the dust mass concentration in each GLOMAP size bin by
FeT (4.5 %) and the measured FS-Fe. The model data pre-
sented in this paper is a three-month (January–March 2000)
mean, following three months of spin-up from a zero-aerosol
atmosphere.

3 Results and discussions

3.1 Size distribution of FS-Fe and FS-Al in mineral dust

Table 2 lists the measured dissolved and total Fe and Al con-
centrations in the size-fractionated dust from both the West-
ern Sahara and Tibesti samples. Dissolved and/or FeT and

total Al (AlT) in the >18 µm, 18–10 µm, and 10–5.6 µm size
fractions from the Tibesti sample and the<0.18 µm fractions
from both the Tibesti and Western Sahara samples were not
included in the table since they were below the limit of de-
tection. Table 2 also illustrates that FeT/AlT in the samples
ranges from 0.42 to 0.58 and from 0.42 to 0.52 in the Western
Sahara and Tibesti samples. These values are close to those
reported in the<20 µm fractions in the two soil samples (Shi
et al., 2011a).

Fig. 2 shows the size distribution of the FS-Fe in the
dust generated from the Western Sahara and Tibesti sam-
ples. FS-Fe in the dust from the Western Sahara sample
ranged from∼0.1 % in the 5.6–3.2 µm and 3.2–1.8 µm frac-
tions to∼0.8 % in 0.32–0.18 µm fractions. The FS-Fe in the
dust (5.6–0.18 µm) generated from the Tibesti sample shows
smaller variations from∼0.2 % in the 1.8–1.0 µm fraction
to ∼0.4 % in 0.32–0.18 µm fraction. Therefore, the FS-Fe
in the dust generated from both soil samples has some de-
gree of size dependence, with finer particles (<1 µm) having
a higher FS-Fe.

The FS-Al shows a similar size dependence to that of Fe
(Fig. 3), with higher FS-Al observed in the 0.18–0.32 µm size
fractions, especially for the Western Sahara sample. The av-
erage ratio of FS-Fe/FS-Al in each size bin is 3.3±1.8 (1σ ,
n = 9) from the Western Sahara sample and 2.7±0.5 (1σ ,
n = 6) from the Tibesti sample.

The higher Fe and Al solubility in sub-micrometer size
particles appears to be compatible with the hypothesis of
Baker and Jickells (2006) that the higher surface area to vol-
ume ratio of smaller dust particles leads to higher proportions
of their total Fe and Al content being available for dissolu-
tion. However, FS-Fe and FS-Al increase by only a factor
of two to three times from>10 µm to 0.32–0.18 size frac-
tions in the Western Sahara and Tibesti samples (Figs. 2 and
3). There are at least two potential reasons for such a small
difference in the FS-Fe and FS-Al in larger dust particles of
different sizes. One is related to the surface roughness of the
large dust particles. Under idealized conditions, surface to
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Fig. 3 Fractional Al solubility (FS-Al) of size-fractionated dust generated from 

Western Sahara and Tibesti samples  
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Fig. 3. Fractional Al solubility (FS-Al) of size-fractionated dust
generated from Western Sahara and Tibesti samples.

volume ratio is inversely proportional to the particle size as-
suming each particle is spherical and smooth. But dust parti-
cles are rarely smooth and spherical and have rough surfaces,
crevices, and dislocations (e.g., Shi et al., 2003, 2005). In
addition, large dust particles are often aggregates of smaller
particles (e.g., Shi et al., 2003, 2008). Therefore, surface to
volume ratio of the actual dust particles is likely to be less
size dependent than idealized spherical particles. Alterna-
tively, although some of the ultra-fine poorly crystalline Fe
oxides (Shi et al., 2011a) or the so-called readily released
Fe (Mackie et al., 2006) may be separated from the sur-
faces of larger dust particles and physically re-distributed in
the finer size fractions during sand-blasting (Mackie et al.,
2006), a large fraction of the readily released Fe may re-
main on the surface of large dust particles. For example,
Shi et al. (2011b) showed that the amount of the most re-
active Fe pool per gram of dust increases from 10.5 µmol in
PM20 (<20 µm) to 18 µmol in PM10 (<10 µm) and 25 µmol
in PM2.5 (<2.5 µm) from the Tibesti sample. Thus, the most
reactive Fe pool is only slightly higher in the<2.5 µm com-
pared to the<10 µm fractions of dust particles.

Our data showed that even the maximum FS-Fe and FS-
Al in the finest size fraction (0.18–0.32 µm) observed in this
study (Fe: ∼0.8 %; Al: 1.42 %) is lower than most of the
measured values in airborne aerosol samples previously re-
ported (e.g., Chen and Siefert, 2004; Baker and Jickells,
2006). The FS-Fe observed in the size-fractionated dust par-
ticles in the current study range from 0.1–0.8 % and are of a
similar magnitude to those measured in the original mineral
dust (e.g., Desboeufs et al., 1999; Chuang et al., 2005; Paris
et al., 2010; Schroth et al., 2009). Ooki et al. (2009) and
Buck et al. (2010a) measured the FS-Fe of size-fractionated
atmospheric aerosol. Their values are one to three orders
of magnitude higher than those of the non-processed dust of
similar size ranges reported in this study. These results in-
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Fig. 4 Three-month mean (January-March) surface dust mass concentrations from 

the region of interest from GLOMAP-bin, overlaid with equivalent in-situ observations 
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Fig. 4. Three-month mean (January–March) surface dust mass con-
centrations from the region of interest from GLOMAP-bin, over-
laid with equivalent in-situ observations from the University of Mi-
ami aerosol network (coloured circles). Stars highlight locations
referred to in Fig. 5 and in the text.

dicate that the size dependence of FS-Fe can only explain a
small part of the measured variability in FS-Fe observed in
atmospheric aerosol samples. The high values of the FS-Fe
of 10 % or even 50 % in some size fractions of the aerosol re-
ported in Buck et al. (2010a) and Ooki et al. (2009) are very
unlikely to be seen in non-atmospherically processed mineral
dust because of the refractory nature of the Fe in the original
dust (Shi et al., 2011a, b).

In the following sections, we combine the aforementioned
size-resolved FS-Fe data with the model size-resolved dust
mass concentrations from GLOMAP to investigate the po-
tential impact of physical size sorting on FS-Fe in the dust
during trans-Atlantic transport. The simulated FS-Fe data
are then compared with the field datasets (Baker and Jick-
ells, 2006) under similar dust mass concentrations.

3.2 Model size-resolved dust mass concentrations

Surface dust mass concentrations over the Sahara and North
Atlantic region calculated in the GLOMAP-bin model for the
period January to March 2000 are shown in Fig. 4. For com-
parison, also shown are in-situ observations from the Uni-
versity of Miami aerosol network (coloured circles), filtered
by Woodward (2001). Globally (not shown), GLOMAP-
bin overestimates dust mass concentrations compared to the
Woodward (2001) dataset, with a normalized mean bias
(mean of (model-observation)/observation) of 0.30 for the
January to March period. For the five observations shown in
Fig. 4 (coloured circles), the normalized mean bias is 0.28,
indicating that the model slightly overestimates dust mass
concentrations in the region of interest. This comparison
illustrates that GLOMAP-bin is capable of representing at-
mospheric dust mass concentrations near source, and remote
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Fig. 5. Modelled dust mass size distributions (left-hand y-axis)
from the two gridboxes over the ocean, one proximal to the dust
source (burgundy line), and one distal location (dark blue line). The
location of these two gridboxes is indicated by white stars in Fig. 4.
The black and light blue dotted lines (right-hand y-axis) show the
measured size-resolved Fe solubility from the Western Sahara soil
sample as compared to the hypothetical curve when the measured
FS-Fe from three smallest size bins (<0.18–0.32 µm; 0.32–0.56 µm;
and 0.56–1.0 µm ) were increased by a factor of ten.

from source region by which time considerable atmospheric
processing may have occurred.

Because GLOMAP-bin resolves particle size and micro-
physical processes, it is capable of simulating the chang-
ing size distribution during transport of an aerosol popula-
tion. The evolution of the size-resolved dust mass concen-
tration from GLOMAP-bin along a west-to-east path across
the North Atlantic is shown by the two solid lines in Fig. 5.
The near-source size-resolved mass concentrations (location
shown by the easternmost white star in Fig. 4) are one to two
orders of magnitude larger than those at a more distant grid-
box (indicated by the westernmost white star in Fig. 4). The
greatest differences between the two locations are for radii
greater than 1 µm. In addition, the peak size of the dust mass
concentration shifted from>1 µm at the gridbox close to the
dust source region to<1 µm at the distal gridbox, as dust par-
ticles at radii larger than 1 µm are more rapidly removed by
gravitational settling.

3.3 Testing the physical sorting hypothesis

Figure 6 shows the modelled FS-Fe at each gridbox against
dust mass concentration by combining the laboratory mea-
sured FS-Fe (the Western Sahara sample) with the model
outputs (i.e., size resolved dust mass concentration). The cal-
culated FS-Fe of dust aerosol increases systematically from
∼0.1 % at high dust mass concentrations to∼0.2 % at low
concentrations. Also shown in Fig. 6 is a subset of the Baker
and Jickells (2006) data covering the same region as the
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Fig. 6. Variations of fractional Fe solubility (FS-Fe) with dust mass
concentration. Red datapoints are a subset of the Baker and Jickells
(2006) dataset. Black datapoints are the FS-Fe calculated by com-
bining the measured size-resolved FS-Fe from the Western Sahara
sample with GLOMAP outputs (size-resolved dust mass concentra-
tions). Blue datapoints are the FS-Fe calculated in the same way but
with the measured FS-Fe of the three smallest size fractions (0.18–
0.32 µm; 0.32–0.56 µm; and 0.56–1.0 µm) increased by a factor of
ten. Summary statistics at the top left of the figure are discussed in
the text.

model sampling area (see Sect. 2.4). The field observations
show an increase from less than 1.0 % to greater than 10.0 %
across the same range of dust mass concentrations. The cal-
culations based on measured FS-Fe from the Tibesti sample
showed an even smaller increase in FS-Fe in the dust during
transport (data not shown).

A sensitivity test was conducted by assuming that the FS-
Fe at the three smallest sizes (1.0–0.56 µm, 0.56–0.32 µm,
and 0.32–0.18 µm) were ten times higher than the measured
values from the Western Sahara sample (dotted light blue line
in Fig. 5). The resultant simulated FS-Fe is shown in Fig. 6
as blue datapoints. Increasing the contrast in FS-Fe between
small and large dust particles accentuates the role of physical
processing. However, even with this hypothetical FS-Fe size
distribution, the calculated FS-Fe of dust aerosol increased
from ∼0.1 % at high dust concentrations to only∼1.0 % at
low concentrations. The latter is still an order of magnitude
lower than those measured in the field (Fig. 6).

The relationship between the three sets of datapoints in
Fig. 6 has been quantified by fitting the data with a line of
the form:

Log(FS-Fe) = m×Log(dust mass concentration)+c (2)

in whichm is the gradient andc is the intercept. The gradient
m of the line calculated from the combined soil FS-Fe and
GLOMAP data (black datapoints in Fig. 6) was−0.04, which
is only about one tenth of the gradient (−0.35) calculated
from the subset of the Baker and Jickells (2006) data. The
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Pearson correlation coefficientr was also calculated. Ther
values are all greater than 0.70, suggesting the correlations
are robust. Even when the hypothetical relationship between
size and FS-Fe is used (blue datapoints in Fig. 6), the gradient
of the fitted line is only−0.14, about one third of that derived
from the atmospheric aerosol samples.

The large contrast in gradients between the simulated and
measured FS-Fe indicates that the observed increase in FS-Fe
with decreasing dust mass concentration observed in Baker
and Jickells (2006) cannot be explained solely by the phys-
ical size sorting process. Similarly (data not shown here),
the observed FS-Al with decreasing dust mass concentra-
tion reported in Baker and Jickells (2006) and Measures et
al. (2010) also cannot be explained by the physical size sort-
ing process only.

These results suggest that the observed increase in FS-Fe
with trans-Atlantic transport (decreasing mass concentration)
in Baker and Jickells (2006) occurs mainly as a result of ad-
ditional mechanisms. One possible mechanism is the mixing
of dust aerosol with combustion particles with higher FS-Fe
(e.g., Chuang et al., 2005; Desboeufs et al., 2005; Sedwick
et al., 2007; Luo et al., 2008; Sholkovitz et al., 2009; Kumar
et al., 2010; Hsu et al., 2010). Another mechanism is chemi-
cal processing of the dust, including acid mobilization (Hand
et al., 2004; Zhu et al., 1992; Meskhidze et al., 2003, 2005;
Fan et al., 2006; Solmon et al., 2009; Ito and Feng, 2010;
Measures et al., 2010; Shi et al., 2011a) and photo-reduction
(e.g., Zhu et al., 1997; Spokes and Jickells, 1996; Hand et
al., 2004).

During dust transport, larger dust particles deposit prefer-
entially due to faster gravitational settling leading to a shift
in mass size distribution (Fig. 5). Our results suggest that the
shift alone cannot explain the inverse relationship between
FS-Fe and dust mass concentrations reported in Baker and
Jickells (2006). However, it is useful to recognize that during
long-range transport, the shift in size will also likely be ac-
companied by relevant changes which include: (1) increase
in the content of more reactive Fe per mass of dust (Shi et
al., 2011b); (2) increase in surface area (Baker and Jickells,
2006); and (3) reduced neutralizing capacity (less carbon-
ate in the atmosphere) and increased potential for acid pro-
cessing and photo-reduction (Spokes and Jickells, 1996). All
these processes could potentially lead to an enhanced FS-Fe
in dust aerosols.

Finally, although the two soil samples are representative of
Saharan dust, there are some variations in mineralogical and
chemical properties of dust from other regions of N Africa
such as the Sahel (Shi et al., 2011a; Lazaro et al., 2008; For-
menti et al., 2008). Such variation may slightly change the
slope of the modelled FS-Fe with dust mass concentration
shown in Fig. 6. The slope may also be to some extent af-
fected by the outputs of size-resolved mass distribution us-
ing different global models. However, these limitations will
unlikely change our conclusion that physical size sorting is
not the dominant process causing the observed inverse re-

lationship between FS-Fe and atmospheric dust mass con-
centration, as evidenced by the sensitivity test (Fig. 6, blue
datapoints).

4 Conclusions

In this study, we report the size-resolved FS-Fe and FS-Al
using mineral dust precursors which have not been subjected
to atmospheric processing. Our data showed that the FS-Fe
ranges from∼0.1 to 0.8 % and that of Al ranged from 0.5 %
to 1.4 %. The measured FS-Fe in size-fractionated dust parti-
cles from the soil samples is orders of magnitude lower than
those of the atmospheric aerosol samples of similar size re-
ported in literature. We find a similar size dependence be-
tween the FS-Fe and FS-Al, with the finest (0.18–0.32 µm)
dust particles having the highest values. By combining the
size-resolved FS-Fe from soil dust samples with the size-
resolved dust mass concentrations from a detailed micro-
physical model, we show that physical sorting leads to a sys-
tematic increase in FS-Fe in the dust. However, the magni-
tude of the increase in FS-Fe with decreasing dust mass con-
centrations due to physical sorting is nearly an order of mag-
nitude lower than that observed over the tropical and sub-
tropical Atlantic Ocean by Baker and Jickells (2006). This
suggests that once the dust reaches the Atlantic Ocean, phys-
ical size sorting is not the dominant mechanism causing the
enhancement of the FS-Fe in dust aerosol during transport.
We therefore suggest that processes such as chemical reac-
tions on the dust particles and/or mixing with anthropogenic
particles are the dominant causes of changes in fractional Fe
solubility in transported dust.
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